题目内容
已知:数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N*)(1)求数列{an}的通项公式an;
(2)若数列{bn}满足bn=log2(an+2),而Tn为数列{
bn | an+2 |
分析:(1)已知前n项和与通项的关系,可以再写一式,两式相减,从而构建新数列{an+2}是以a1+2为首项,以2为公比的等比数列,进而求出通项;(2)先分析出{
}通项的特点,再用错位相减法求和.
bn |
an+2 |
解答:解:(1)当n∈N*时,Sn=2an-2n,①则当n≥2,n∈N*时,Sn-1=2an-1-2(n-1).②
①-②,得an=2an-2an-1-2,即an=2an-1+2,∴an+2=2(an-1+2)∴
=2.
当n=1 时,S1=2a1-2,则a1=2,当n=2时,a2=6,∴{an+2}是以a1+2为首项,以2为公比的等比数列.
∴an+2=4•2n-1,∴an=2n+1-2,(7分)
(2)由bn=log2(an+2)=log22n+1=n+1,得
=
,
则Tn=
+
+…+
,③
Tn=
+…+
+
,④
③-④,得
Tn=
+
+
+…+
-
=
+
-
=
+
-
-
=
-
∴Tn=
-
(14分)
①-②,得an=2an-2an-1-2,即an=2an-1+2,∴an+2=2(an-1+2)∴
an+2 |
an-1+2 |
当n=1 时,S1=2a1-2,则a1=2,当n=2时,a2=6,∴{an+2}是以a1+2为首项,以2为公比的等比数列.
∴an+2=4•2n-1,∴an=2n+1-2,(7分)
(2)由bn=log2(an+2)=log22n+1=n+1,得
bn |
an+2 |
n+1 |
2n+1 |
则Tn=
2 |
22 |
3 |
23 |
n+1 |
2n+1 |
1 |
2 |
2 |
23 |
n |
2n+1 |
n+1 |
2n+2 |
③-④,得
1 |
2 |
2 |
22 |
1 |
23 |
1 |
24 |
1 |
2n+1 |
n+1 |
2n+2 |
=
1 |
4 |
| ||||
1-
|
n+1 |
2n+2 |
=
1 |
4 |
1 |
2 |
1 |
2n+1 |
n+1 |
2n+2 |
=
3 |
4 |
n+3 |
2n+2 |
∴Tn=
3 |
2 |
n+3 |
2n+1 |
点评:有些数列不易直接化成等差或等比数列,但经推理可寻求特殊的关系转化为等差或等比数列求解

练习册系列答案
相关题目