题目内容

已知:数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N*)
(1)求数列{an}的通项公式an
(2)若数列{bn}满足bn=log2(an+2),而Tn为数列{
bnan+2
}
的前n项和,求Tn
分析:(1)已知前n项和与通项的关系,可以再写一式,两式相减,从而构建新数列{an+2}是以a1+2为首项,以2为公比的等比数列,进而求出通项;(2)先分析出{
bn
an+2
}
通项的特点,再用错位相减法求和.
解答:解:(1)当n∈N*时,Sn=2an-2n,①则当n≥2,n∈N*时,Sn-1=2an-1-2(n-1).②
①-②,得an=2an-2an-1-2,即an=2an-1+2,∴an+2=2(an-1+2)∴
an+2
an-1+2
=2.
当n=1 时,S1=2a1-2,则a1=2,当n=2时,a2=6,∴{an+2}是以a1+2为首项,以2为公比的等比数列.
∴an+2=4•2n-1,∴an=2n+1-2,(7分)
(2)由bn=log2(an+2)=log22n+1=n+1,得
bn
an+2
=
n+1
2n+1

则Tn=
2
22
+
3
23
+…+
n+1
2n+1
,③
1
2
Tn=
2
23
+…+
n
2n+1
+
n+1
2n+2
,④
③-④,得
1
2
Tn=
2
22
+
1
23
+
1
24
+…+
1
2n+1
-
n+1
2n+2

=
1
4
+
1
4
(1-
1
2n
)
1-
1
2
-
n+1
2n+2

=
1
4
+
1
2
-
1
2n+1
-
n+1
2n+2

=
3
4
-
n+3
2n+2

∴Tn=
3
2
-
n+3
2n+1
(14分)
点评:有些数列不易直接化成等差或等比数列,但经推理可寻求特殊的关系转化为等差或等比数列求解
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网