题目内容

已知函数g(x)=
1-x21+x2
(x≠0,x≠±1,x∈R)
的值域为A,定义在A上的函数f(x)=x-2-x2(x∈A).
(1)判断函数f(x)的奇偶性;
(2)判断函数f(x)的单调性并用定义证明;
(3)解不等式f(3x+1)>f(5x+1).
分析:(1)化简函数f(x),考察函数的定义域再利用函数的奇偶性的定义直接求解即可;
(2)任取设x1<x2我们构造出f(x1)-f(x2)的表达式,根据实数的性质,我们易出f(x1)-f(x2)的符号,进而根据函数单调性的定义,得到答案;
(3)由(1)知f(x)是偶函数,所以f(x)=f(|x|),从而原不等式化为f(|3x+1|)>f(|5x+1|)再结合函数的单调性脱掉函数符号:“f”转化为绝对值不等式组求解即得.
解答:解:(1)由y=
1-x2
1+x2
x2=
1-y
1+y
>0
,故-1<y<1,因此A=(-1,0)∪(0,1).又
因为f(-x)=f(x),所以f(x)是偶函数;
(2)设x1<x2,则f(x1)-f(x2)=
1
x
2
1
-
x
2
1
-
1
x
2
2
+
x
2
2
=(x2-x1)(x2+x1)(1+
1
x
2
1
x
2
2
)

①如果x1,x2∈(-1,0),那么x1+x2<0,故f(x1)-f(x2)<0即f(x1)<f(x2);
②若x1,x2∈(0,1),则x1+x2>0,故f(x1)-f(x2)>0即f(x1)>f(x2).
因此f(x)在(-1,0)单增,在(0,1)单减;
(3)因为f(x)是偶函数,所以f(x)=f(|x|),从而原不等式化为f(|3x+1|)>f(|5x+1|).
|3x+1<|5x+1
0<|3x+1<1
0<|5x+1<1
,即
(8x+2)•2x>0
-
2
3
<x<0且x≠-
1
3
-
2
5
<x< 0且x≠-
1
5

解得-
2
5
<x<-
1
3
或-
1
3
x<-
1
4
,从而原不等式的解集为{x|-
2
5
<x<-
1
3
或-
1
3
x<-
1
4
}
点评:本小题主要考查函数单调性的应用、函数奇偶性的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网