题目内容
设
,函数
.
(1)若
,求曲线
在点
处的切线方程;
(2)若
无零点,求实数
的取值范围;
(3)若
有两个相异零点
、
,求证:
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031748431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031764698.png)
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031779386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031904600.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031920567.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031935495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031951283.png)
(3)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031935495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031966300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031982331.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031998547.png)
(1)切线方程为
;(2)实数
的取值范围是
;(3)详见解析.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032029527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031951283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032044728.png)
试题分析:(1)将
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031779386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031935495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031935495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031951283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031935495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031951283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032138413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032154539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032169666.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031951283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032200800.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032216543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032232987.png)
试题解析:在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032232566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032247874.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031779386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032278668.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032294671.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032029527.png)
(2)①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032325369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032325606.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032341323.png)
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032356387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032372622.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031935495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032232566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032419675.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240324341023.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032450848.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031935495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032232566.png)
③当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032528398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032544607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032559437.png)
在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032575674.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032372622.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031935495.png)
在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032622747.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032637618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031935495.png)
故在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032232566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031935495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240327151040.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032731791.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032746507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032762453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031951283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032044728.png)
另解:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031935495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032918256.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032934526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032232566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032918256.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032138413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032154539.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032169666.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024033027748.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024033043595.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024033058358.png)
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | 增 | 极大值![]() | 减 |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031935495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024033058358.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024033261927.png)
由于直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032138413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032154539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032762453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031951283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032044728.png)
(3)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024033355532.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024033370607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024033386607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024033402579.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024033417604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024033417846.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024033433795.png)
原不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240334483332.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024033464601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240335581436.png)
设函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240335731150.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240336511420.png)
故函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024033667498.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032216543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024033698773.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024032200800.png)
故所证不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024031998547.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目