题目内容

已知abR,函数f(x)aln(x1)的图象与g(x)x3x2bx的图象在交点(0,0)处有公共切线.

(1)证明:不等式f(x)≤g(x)对一切x(1,+∞)恒成立;

(2)设-1x1x2,当x(x1x2)时,证明:.

 

1)见解析(2)见解析

【解析】(1)由题意得f′(x)g′(x)x2xbx>-1

解得

f(x)ln(x1)(x>-1)g(x)x3x2x.

h(x)f(x)g(x)

ln(x1)x3x2x(x>-1)

h′(x)x2x1=-

h(x)(1,0)上单调递增,在(0,+∞)上单调递减,

h(x)≤h(0)0f(x)≤g(x)

(2)x(x1x2)时,由题意得-1x1xx2

u(x)(x1)[f(x)f(x1)](xx1)

u′(x)ln(x1)ln(x11)0

u(x)u(x1)0,即(x1)[f(x)f(x1)](xx1)0

v(x)(x1)[f(x)f(x2)](xx2)

v′(x)ln(x1)ln(x21)0

v(x)v(x2)0,即(x1)[f(x)f(x2)](xx2)0

①②.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网