题目内容
如果函数f(x)在区间D上有定义,且对任意x1,x2∈D,x1≠x2,都有f(x1+x2 |
2 |
f(x1)+f(x2) |
2 |
(Ⅰ)已知f(x)=ln(1+ex)-x(x∈R),判断f(x)是否是“凹函数”,若是,请给出证明;若不是,请说明理由;
(Ⅱ)已知f(x)=ln(1+ex)-x是定义域在R上的减函数,且A、B、C是其图象上三个不同的点,求证:△ABC是钝角三角形.
分析:(Ⅰ)首先由题设条件右以判断函数f(x)是凹函数,然后用函数单调性的定义进行证明
(Ⅱ)设A(x1,y1),B(x2,y2),C((x3,y3),且x1<x2<x3,由f(x)是x∈R上的单调减函数知f(x1)>f(x2)>f(x3),由此能够推导出<B是钝角,所以△ABC为钝角三角形.
(Ⅱ)设A(x1,y1),B(x2,y2),C((x3,y3),且x1<x2<x3,由f(x)是x∈R上的单调减函数知f(x1)>f(x2)>f(x3),由此能够推导出<B是钝角,所以△ABC为钝角三角形.
解答:解:(Ⅰ)函数f(x)是凹函数,证明如下:设x1,x2∈R,且x1<x2,
则f(x1)+f(x2)-2f(
)
=ln(1+ex1)+ln(1+ex2)-x1-x2-2[ln(1+e
)-
]
=ln(1+ex1)(1+ex2)-ln(1+e
)2
=ln(1+ex1+ex2+ex1+x2)-ln(1+2e
+ex1+x2)
∵ex1>0,ex2>0,且x1≠x2
∴ex1+ex2>2
=2e
∴1+ex1+ex2+ex1+x2>1+2e
+ex1+x2
∴ln(1+ex1+ex2+ex1+x2)>ln(2+2e
+ex1+x2)
∴ln(1+ex1+ex2+ex1+x2)-ln(1+2e
+ex1+x2)>0
∴f(x1)+f(x2)>2f(
)∴f(x)是凹函数(7分)
(Ⅱ)证明:(Ⅱ)设A(x1,y1),B(x2,y2),C((x3,y3),
且x1<x2<x3,∵f(x)是x∈R上的单调减函数∴f(x1)>f(x2)>f(x3)
∴
•
=(x1-x2)(x3-x2)+(f(x1)-f(x2))(f(x3)-f(x2))
∵x1-x2<0,x3-x2>0,f(x1)-f(x2)>0,f(x3)-f(x2)<0
∴
•
<0,∴cosB<0,∠B为钝角
故△ABC为钝角三角形.(13分)
则f(x1)+f(x2)-2f(
x1+x2 |
2 |
=ln(1+ex1)+ln(1+ex2)-x1-x2-2[ln(1+e
x1+x2 |
2 |
x1+x2 |
2 |
=ln(1+ex1)(1+ex2)-ln(1+e
x1+x2 |
2 |
=ln(1+ex1+ex2+ex1+x2)-ln(1+2e
x1+x2 |
2 |
∵ex1>0,ex2>0,且x1≠x2
∴ex1+ex2>2
ex1ex2 |
x1+x2 |
2 |
∴1+ex1+ex2+ex1+x2>1+2e
x1+x2 |
2 |
∴ln(1+ex1+ex2+ex1+x2)>ln(2+2e
x1+x2 |
2 |
∴ln(1+ex1+ex2+ex1+x2)-ln(1+2e
x1+x2 |
2 |
∴f(x1)+f(x2)>2f(
x1+x2 |
2 |
(Ⅱ)证明:(Ⅱ)设A(x1,y1),B(x2,y2),C((x3,y3),
且x1<x2<x3,∵f(x)是x∈R上的单调减函数∴f(x1)>f(x2)>f(x3)
∴
BA |
BC |
∵x1-x2<0,x3-x2>0,f(x1)-f(x2)>0,f(x3)-f(x2)<0
∴
BA |
BC |
故△ABC为钝角三角形.(13分)
点评:本题考查函数的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目