题目内容

已知椭圆C1
x2
4
+
y2
3
=1
,其左准线为l1,右准线为l2,一条以原点为顶点,l1为准线的抛物线C2交l2于A,B两点,则|AB|等于(  )
A、2B、4C、8D、16
分析:先根据条件求出两准线方程以及抛物线方程;再联立抛物线C2与l2的方程求出A,B两点纵坐标即可求出结论.
解答:解:由题得:椭圆的左准线l1的方程为:x=-
a2
c
=-4,右准线为l2,x=4.
∴-
p
2
=-4.
∴p=8,
∴抛物线方程为:y2=16x.
联立
y2=16x
x=4
⇒y1=8,y2=-8.
∴|AB|=|y1-y2|=16.
故选:D.
点评:本题主要考查椭圆的简单性质以及抛物线的简单性质,考查计算能力,属于基础题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网