题目内容

精英家教网{an}是首项为a1=
1
4
,公比q=
1
4
的等比数列,设bn+2=3log
1
4
an(n∈N*)
,数列{cn}满足cn=
3
bnbn+1

(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若数列{cn}的前n项和为Tn,求Tn
分析:(Ⅰ)由题设知an=(
1
4
)
n
bn+2=3log
1
4
an(n∈N*)
=3log
1
4
(
1
4
)
n
=3n,由此能求出数列{bn}的通项公式.
(Ⅱ)由cn=
3
bnbn+1
=
3
(3n-2)(3n+1)
=
1
3n-2
-
1
3n+1
,能求出数列{cn}的前n项和为Tn
解答:解:(Ⅰ)∵{an}是首项为a1=
1
4
,公比q=
1
4
的等比数列,
an=(
1
4
)
n
bn+2=3log
1
4
an(n∈N*)
=3log
1
4
(
1
4
)
n
=3n,
∴bn=3n-2.
(Ⅱ)cn=
3
bnbn+1
=
3
(3n-2)(3n+1)
=
1
3n-2
-
1
3n+1

∴Tn=(1-
1
4
)+(
1
4
-
1
7
)+…+(
1
3n-2
-
1
3n+1
)

=1-
1
3n+1
点评:本题考查数列的递推式和数列的求和,解题时要注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网