题目内容
【题目】已知函数, ()
(Ⅰ)求函数的单调区间;
(Ⅱ)证明:当时,对于任意, ,总有成立,其中是自然对数的底数.
【答案】(Ⅰ)详见解析;(Ⅱ)详见解析.
【解析】试题分析:(I)先求导,由此,对进行分类讨论, 时,开口向下, 时,开口向上,分别画出对应导函数的图象,从而得出单调区间.(II)由(I)当时, 在是正函数,在上为减函数. .用(I)的方法,对求导后进行分类讨论,利用导数证明恒成立即可.
试题解析:
(Ⅰ)函数f (x)的定义域为R,f ′(x)==.
当a>0时,当x变化时,f ′(x),f(x)的变化情况如下表:
x | (-∞,-1) | -1 | (-1,1) | 1 | (1,+∞) |
f ′(x) | - | 0 | + | 0 | - |
f (x) | ↘ | ↗ | ↘ |
当a<0时,当x变化时,f ′(x),f(x)的变化情况如下表:
x | (-∞,-1) | -1 | (-1,1) | 1 | (1,+∞) |
f ′(x) | + | 0 | - | 0 | + |
f (x) | ↗ | ↘ | ↗ |
综上所述,
当a>0时,f (x)的单调递增区间为(-1,1),单调递减区间为(-∞,-1),(1,+∞);
当a<0时,f (x)的单调递增区间为(-∞,-1),(1,+∞),单调递减区间为(-1,1).
(Ⅱ)由(Ⅰ)可知,当a>0时,f (x)在区间(0,1)上单调递增,f (x)>f (0)=a;
f (x)在区间(1,e]上单调递减,且f (e)=+a>a,所以当x∈(0,e]时,f (x)>a.
因为g(x)=aln x-x,所以g′(x)=-1,令g′(x)=0,得x=a.
①当a≥e时,g′(x)≥0在区间(0,e]上恒成立,
所以函数g(x)在区间(0,e]上单调递增,所以g(x)max=g(e)=a-e<a.
所以对于任意x1,x2∈(0,span>e],仍有g(x1)<f(x2).
②当0<a<e时,由g′(x)>0,得0<x<a;由g′(x)<0,得e≥x>a,所以函数g(x)在区间(0,a)上单调递增,在区间(a,e]上单调递减.所以g(x)max=g(a)=aln a-a.
因为a-(aln a-a)=a(2-ln a)>a(2-ln e)=a>0,
所以对任意x1,x2∈(0,e],总有g(x1)<f (x2).
综上所述,对于任意x1,x2∈(0,e],总有g(x1)<f (x2).