题目内容
已知复数满足,则( )
A. B. C. D.
在三棱锥中,底面为直角三角形,,平面.
(1)证明:;
(2)若为的中点,且,求点到平面的距离.
下列说法中正确的是( )
A.已知是可导函数,则“”是“是的极值点”的充分不必要条件
B.“若,则”的否命题是“若,则”
C.若:,则:
D.若为假命题,则均为假命题
中, 边上的中线等于,且,则 .
如图,阴影部分是由四个全等的直角三角形组成的图形, 在大正方形内随机取一点, 这一点落在小正方形内的概率为, 若直角三角形的两条直角边的长分别为,则( )
某厂家计划在2012年举行商品促销活动,经调查测算,该商品的年销售量万件与年促销费用万元满足:,其中为常数,若不搞促销活动,则该产品的年销售量只有1万件,已知2012年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家的产量等于销售量,而销售收入为生产成本的1.5倍(生产成本由固定投入和再投入两部分资金组成).
(1)将2012年该产品的利润万元表示为年促销费用万元的函数;
(2)该厂2012年的促销费用投入多少万元时,厂家的利润最大?
方程的两根满足,且,则实数的取值范围为 .
已知等比数列{an}的各项均为正数,且2a1+3a2=1, .
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.
如图,四棱锥,底面是的菱形,侧面是边长为的正三角形,O是AD的中点, 为的中点.
(1)求证:;
(2)若PO与底面ABCD垂直,求直线与平面所成的角的正弦值.