题目内容
17.函数y=($\frac{1}{3}$)x-1的值域是.分析 根据指数函数的图象和性质,结合函数图象的平移变换,可得函数的值域.
解答 解:∵y=$(\frac{1}{3})^{x}$>0,
∴$f(x)=(\frac{1}{3})^{x}-1$>-1,
即函数$f(x)=(\frac{1}{3}{)^x}-1$的值域是(-1,+∞),
故答案为:(-1,+∞)
点评 本题考查的知识点是函数的值域,熟练掌握指数函数的图象和性质,是解答的关键.
练习册系列答案
相关题目
5.某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
12.从一群游戏的小孩中抽出k人,一人分一个苹果,让他们返回继续游戏,一段时间后,再从中任取m人,发现其中有n个小孩曾分过苹果,估计一共有小孩多少人( )
A. | k•$\frac{m}{n}$ | B. | k•$\frac{n}{m}$ | C. | k+m-n | D. | 不能估计 |
2.打鼾不仅影响别人休息,而且可能与患某种疾病有关.表是一次调查所得的数据,
(1)将本题的2*2联表格补充完整.
(2)用提示的公式计算,每一晚都打鼾与患心脏病有关吗?
提示
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(1)将本题的2*2联表格补充完整.
(2)用提示的公式计算,每一晚都打鼾与患心脏病有关吗?
提示
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
患心脏病 | 未患心脏病 | 合计 | |
每一晚都打鼾 | 3 | 17 | a= |
不打鼾 | 2 | 128 | b= |
合计 | c= | d= | n= |
9.若命题“?x∈R,x2+(a-1)x+1>0”是真命题,则实数a的取值范围是( )
A. | [-1,3] | B. | (-1,3) | C. | (-∞,-1]∪[3,+∞) | D. | (-∞,-1)∪(3,+∞) |
6.设集合A={1,2,4,6,8},B={1,2,3,5,6,7},则A∩B的子集个数为( )
A. | 3 | B. | 6 | C. | 8 | D. | 16 |
7.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )
A. | 若m∥α,n⊥β,且α⊥β,则m∥n | B. | 若α∥β,m?α,n?β,则m∥n | ||
C. | 若m⊥α,n⊥β,m⊥n,则α⊥β | D. | 若m⊥n,m?α,n?β,则α⊥β |