题目内容

设k为实数,已知向量
a
=(1,2),
b
=(-3,2),且(k
a
+
b
)⊥(
a
-3
b
),则k的值是
11
11
分析:利用向量垂直与向量数量积之间的关系建立方程(k
a
+
b
)•(
a
-3
b
)=0,解方程即可求k.
解答:解:∵(k
a
+
b
)⊥(
a
-3
b
),
∴(k
a
+
b
)•(
a
-3
b
)=0,
a
=(1,2),
b
=(-3,2),
∴k
a
+
b
=(k-3,2k-2),
a
-3
b
=(10,-4),
∴(k-3,2k-2)•(10,-4)=0,
即10(k-3)-4(2k-2)=0
解得k=11.
故答案为:11.
点评:本题主要考查平面向量数量积的运算,利用向量垂直与向量数量积之间的关系是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网