题目内容
已知直线与轴交于点,与直线交于点,椭圆以为左顶点,以为右焦点,且过点,当时,椭圆的离心率的范围是
A. B. C. D.
【答案】
D
【解析】
试题分析:因为给定的直线与轴交于点,与直线交于点,椭圆以为左顶点,以为右焦点,且过点(c,k(c+a))设椭圆的方程为
,则可知有,同时由于点M在曲线上可知,,同时利用勾股定理得到,联立方程组得到关系式,进而利用,得到离心率的范围,,故选D.
考点:本试题考查了椭圆的性质。
点评:解决该试题的关键是对于直线的斜率与椭圆的参数a,b,c的关系式的运用,结合椭圆的方程来分析得到,属于基础题。
练习册系列答案
相关题目