题目内容
(1)化简4(
-3
+5
)-2(-3
-6
+8
)=
,
不共线,实数x,y满足(3x-4y)
+(2x-3y)
=6
+3
,则x-y的值=
a |
b |
c |
a |
b |
c |
10
+4
a |
c |
10
+4
.(2)计算:已知向量a |
c |
e1 |
e2 |
e1 |
e2 |
e1 |
e2 |
3
3
.分析:本题(1)为向量的加减运算,按向量的运算法则即可得结果,(2)根据向量相等的定义,只需让方程两边
,
的系数分别对应相等.
e1 |
e2 |
解答:解;(1)4(
-3
+5
)-2(-3
-6
+8
)
=4
-12
+20
+6
+12
-16
=10
+4
(2)由题意可得
方程组中的两式相减即可的x-y=3,
故答案应填3
a |
b |
c |
a |
b |
c |
=4
a |
b |
c |
a |
b |
c |
=10
a |
c |
(2)由题意可得
|
方程组中的两式相减即可的x-y=3,
故答案应填3
点评:本题为平面向量的加减混合运算,属基础题.
练习册系列答案
相关题目