题目内容
已知数列{an}中,a1=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_ST/1.png)
(I)求数列{an}的通项公式;
(Ⅱ)记
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_ST/2.png)
(1)求极限
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_ST/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_ST/4.png)
(2)对一切正整数n,若不等式λ
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_ST/5.png)
【答案】分析:(I)因为数列{an}不是特殊的数列,所以可用构造法,构造一个新数列,使其具有一定的规律.通过观察,可以发现,3(a n+1-a n)=a n-a n-1则新数列为等比数列,求出新数列的通项公式,再根据新数列的通项公式叠加求数列{an}的通项公式.
(Ⅱ)①
(2-a i-1)=
(1+
)(1+
)(1+
)…(1+
)=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/7.png)
,再对分子进行化简即可得出答案;
②λ
ai>1(λ∈N*)恒成立?λ(1-
)(1-
)(1-
)…(1-
)>1.下面利用数学归纳法证明(1-
)(1-
)(1-
)…(1-
)>1-
,从而得出λ的最小值.
解答:解:(I)a1=
,a2=
且当n≥2,n∈N时,3a n+1=4a-a n-1
∴3(a n+1-a n)=a n-a n-1
∴an-a n-1=
(a n-1-a n-2)=
(a n-2-a n-3)=…=
(a 2-a 1)=
,
叠加,得an-a1=2(
+
+…+
)
故所求的通项公式为an=1-
,(n∈N*)
(Ⅱ)①
(2-a i-1)=
(1+
)(1+
)(1+
)…(1+
)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/36.png)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/38.png)
=
.
②λ
ai>1(λ∈N*)恒成立?λ(1-
)(1-
)(1-
)…(1-
)>1
下面证明(1-
)(1-
)(1-
)…(1-
)>1-![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/50.png)
(i)当n=1时,不等式成立;
当n=2时,左边=(1-
)(1-
)=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/53.png)
右边=1-(
+
)=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/56.png)
左边>右边,不等式成立.
(ii)假设当n=k时,(1-
)(1-
)(1-
)…(1-
)≥1-(
+
+…+
)
成立.
则当n=k+1时,,(1-
)(1-
)(1-
)…(1-
)(1-
)
≥[1-(
+
+…+
)(1-
)=(
+
)(1-
)>
+![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/77.png)
又1-(
+
+…+
+
)=1-
=
+![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/84.png)
∴当n=k+1时,不等式也成立.
综上(i)、(ii)可知,(1-
)(1-
)(1-
)…(1-
)>1-
成立.
对一切正整数n,不等式λ
ai>1(λ∈N*)恒成立
?1-![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/91.png)
恒成立
(1-
)=
[
+
(
)n]=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/99.png)
∴1-
>![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/101.png)
故只需
≥
,∴λ≥2
而λ∈N*.
∴λ的最小值为2.
点评:本小题主要考查数列递推式、数列的函数特性、数列的极限、数学归纳法等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
(Ⅱ)①
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/8.png)
②λ
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/18.png)
解答:解:(I)a1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/20.png)
∴3(a n+1-a n)=a n-a n-1
∴an-a n-1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/24.png)
叠加,得an-a1=2(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/27.png)
故所求的通项公式为an=1-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/28.png)
(Ⅱ)①
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/29.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/30.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/31.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/32.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/33.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/34.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/35.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/36.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/37.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/38.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/39.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/40.png)
②λ
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/41.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/42.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/43.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/44.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/45.png)
下面证明(1-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/46.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/47.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/48.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/49.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/50.png)
(i)当n=1时,不等式成立;
当n=2时,左边=(1-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/51.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/52.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/53.png)
右边=1-(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/54.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/55.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/56.png)
左边>右边,不等式成立.
(ii)假设当n=k时,(1-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/57.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/58.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/59.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/60.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/61.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/62.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/63.png)
成立.
则当n=k+1时,,(1-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/64.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/65.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/66.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/67.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/68.png)
≥[1-(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/69.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/70.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/71.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/72.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/73.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/74.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/75.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/76.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/77.png)
又1-(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/78.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/79.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/80.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/81.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/82.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/83.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/84.png)
∴当n=k+1时,不等式也成立.
综上(i)、(ii)可知,(1-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/85.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/86.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/87.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/88.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/89.png)
对一切正整数n,不等式λ
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/90.png)
?1-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/91.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/92.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/93.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/94.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/95.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/96.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/97.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/98.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/99.png)
∴1-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/100.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/101.png)
故只需
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/102.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024185257769663689/SYS201310241852577696636021_DA/103.png)
而λ∈N*.
∴λ的最小值为2.
点评:本小题主要考查数列递推式、数列的函数特性、数列的极限、数学归纳法等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|