题目内容

设f(x)=lg(
2
1-x
+a)是奇函数,则使f(x)>0的x的取值范围是(  )
A、(-1,0)
B、(0,1)
C、(-∞,0)
D、(0,+∞)
分析:根据奇函数的性质f(0)=0可得,可求a,进而可求函数 f(x),由f(x)>0可得,解不等式可得
解答:解:根据奇函数的性质可得,f(0)=lg(2+a)=0
∴a=-1,f(x)=lg(
2
1-x
-1
)=lg
1+x
1-x

由f(x)>0可得,lg
1+x
1-x
>0

1+x
1-x
>1

解不等式可得0<x<1
故选:B
点评:本题主要考查了对数不等式与分式不等式的基本的解法,但解题的关键是要根据奇函数的性质f(0)=0,先要求出函数中的参数a,的值,此方法比直接利用奇函数的定义简单.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网