题目内容
已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为
A. | B. |
C. | D. |
C
解析试题分析:设回归直线方程为
∵样本点的中心为(4,5),∴5=1.23×4+a
∴a=0.08∴回归直线方程为故选C.
考点:线性回归方程.
练习册系列答案
相关题目
右图是一容量为的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )
A. | B. | C. | D. |
某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是( )
A.抽签法 | B.随机数表法 | C.系统抽样法 | D.分层抽样法 |
某学校从高二甲、乙两个班中各选6名同掌参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是 85,乙班学生成绩的平均分为81,则x+y的值为( )
A.6 | B.7 |
C.8 | D.9 |
为了估计某水池中鱼的尾数,先从水池中捕出2000尾鱼,并给每尾鱼做上标记(不影响存活),然后放回水池,经过适当的时间,再从水池中捕出500尾鱼,其中有标记的鱼为40尾,根据上述数据估计该水池中鱼的尾数为( )
A.10000 | B.20000 | C.25000 | D.30000 |
将参加夏令营的600名学生编号为:001,002,……600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )
A.26,16,8, | B.25,17,8 | C.25,16,9 | D.24,17,9 |
某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( ).
A.抽签法 | B.随机数法 | C.系统抽样法 | D.分层抽样法 |
若回归直线方程的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( ).
A.=1.23x+4 | B.=1.23x+5 |
C.=1.23x+0.08 | D.=0.08x+1.23 |