题目内容

已知各项均为正数的等比数列{an}的首项a1=1,公比为q,前n项和为Sn,若
lim
n→+∞
Sn+1
Sn
=1
,则公比q的取值范围是(  )
A.q≥1B.0<q<1C.0<q≤1D.q>1
当q=1的情况,Sn+1=(n+1)a1,所以
lim
n→+∞
Sn+1
Sn
=
n+1
n
=1
成立,
当q≠1是的情况,Sn
a1(1-qn)
1-q
,所以
lim
n→+∞
Sn+1
Sn
=
1-qn+1
1-qn

可以看出当q为小于1的分数的时候
lim
n→+∞
Sn+1
Sn
=1
成立,
故答案应选择C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网