题目内容
已知z、w、x为复数,且x=(1+3i)•z,w=
且|w|=5
.
(1)若w为大于0的实数,求复数x.
(2)若x为纯虚数,求复数w.
z |
2+i |
2 |
(1)若w为大于0的实数,求复数x.
(2)若x为纯虚数,求复数w.
(1)∵x=(1+3i)•z,∴z=
.
若w为大于0的实数,
∵w=
=
=
,|w|=5
,
则有 5
=
,∴x=-5
+35
i.
(2)若x为纯虚数,设x=bi,b≠0.
由(1)可得 |
|=|
|=5
,∴b=±50.
∴w=
=
=7-i,或w=
=
=-7+i.
x |
1+3i |
若w为大于0的实数,
∵w=
z |
2+i |
x |
(1+3i)(2+i) |
x |
-1+7i |
2 |
则有 5
2 |
x |
-1+7i |
2 |
2 |
(2)若x为纯虚数,设x=bi,b≠0.
由(1)可得 |
x |
-1+7i |
bi |
-1+7i |
2 |
∴w=
x |
-1+7i |
50i |
-1+7i |
x |
-1+7i |
-50i |
-1+7i |
练习册系列答案
相关题目