题目内容
16.已知集合M={x|y=lg(2x-x2)},N={x|x2+y2=1},则M∩N=( )A. | [-1,2) | B. | (0,1) | C. | (0,1] | D. | ∅ |
分析 求出M中x的范围确定出M,求出N中x的范围确定出N,找出两集合的交集即可.
解答 解:由M中y=lg(2x-x2),得到2x-x2>0,即x(x-2)<0,
解得:0<x<2,即M=(0,2),
由N中x2+y2=1,得到-1≤x≤1,即N=[-1,1],
则M∩N=(0,1],
故选:C.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
7.若直线2x+y-2$\sqrt{5}$=0过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点,且与双曲线的一条渐近线垂直,则双曲线的方程为( )
A. | $\frac{{x}^{2}}{4}-{y}^{2}=1$ | B. | x2-$\frac{{y}^{2}}{4}=1$ | C. | $\frac{{x}^{2}}{10}-\frac{{y}^{2}}{5}=1$ | D. | $\frac{{x}^{2}}{16}-\frac{{y}^{2}}{4}=1$ |
4.学校开展阳光体育活动,对学生的锻练时间进行随机抽样调查,从中随机抽取男、女生各25名进行了问卷调查,得到了如下列联表:
(Ⅰ) 根据上表数据求x,y,并据此资料分析:有多大的把握可以认为“锻练时间与性别有关”?
(Ⅱ) 从这50名学生中用分层抽样的方法抽取5人为样本,求从该样本中任取2人,
至少有1人锻练时间少于1小时的概率.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
锻练时间 | 男生 | 女生 | 合计 |
少于1小时 | 5 | 15 | 20 |
不少于1小时 | 20 | 10 | 30 |
合 计 | 25 | 25 | 50 |
(Ⅱ) 从这50名学生中用分层抽样的方法抽取5人为样本,求从该样本中任取2人,
至少有1人锻练时间少于1小时的概率.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥K0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
11.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F1作直线l⊥x轴交双曲线C的渐近线于点A,B若以AB为直径的圆恰过点F2,则该双曲线的离心率为( )
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
6.执行如图所示的程序框图,若P=$\frac{11}{12}$.则输出的n=( )
A. | 4 | B. | 5 | C. | 6 | D. | 7 |