题目内容
已知线段面,,,面于点,,且在平面的同侧,若,则的长为
解析
(文科做)(本题满分14分)如图,在长方体ABCD—A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1E⊥A1D;(2)当E为AB的中点时,求点E到面ACD1的距离;(3)AE等于何值时,二面角D1—EC-D的大小为. (理科做)(本题满分14分)如图,在直三棱柱ABC – A1B1C1中,∠ACB = 90°,CB = 1,CA =,AA1 =,M为侧棱CC1上一点,AM⊥BA1.(Ⅰ)求证:AM⊥平面A1BC;(Ⅱ)求二面角B – AM – C的大小;(Ⅲ)求点C到平面ABM的距离.
设直线的方向向量是,平面的法向量是,则下列推理中① ②③ ④中正确的命题序号是 .
在四棱锥P—ABCD中,侧面PAD、侧面PCD与底成ABCD都垂直,底面是边长为3的正方形,PD=4,则四棱锥P—ABCD的全面积为 .
已知两条不同直线、,两个不同平面、,给出下列命题:①若垂直于内的两条相交直线,则⊥;②若//,则平行于内的所有直线;③若,且⊥,则⊥;④若⊥,,则⊥;⑤若,且//,则//.其中正确命题的序号是 .(把你认为正确命题的序号都填上)
.如图,在三棱锥A—BCD中,已知侧面ABD底面BCD,若,则侧棱AB与底面BCD所 成的角为 .
下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥.②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.④侧棱与底面所成的角相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥.其中,真命题的编号是 (写出所有真命题的编号)
如图,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥DQ,则a的值等于 .
一长方形的四个顶点在直角坐标平面内的射影的坐标分别为 ,则此长方形的中心在此坐标平面内的射影的坐标是 .