题目内容

已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.

(Ⅰ)证明PQ⊥平面ABCD;

(Ⅱ)求异面直线AQ与PB所成的角;

(Ⅲ)求点P到平面QAD的距离.

 

【答案】

(Ⅰ)由P-ABCD与Q-ABCD都是正四棱锥,得到PO⊥平面ABCD,QO⊥平面ABCD.

从而P、O、Q三点在一条直线上,所以PQ⊥平面ABCD.

(Ⅱ).(Ⅲ) .

【解析】

试题分析:(Ⅰ)连结AC、BD,设.

由P-ABCD与Q-ABCD都是正四棱锥,所以PO⊥平面ABCD,QO⊥平面ABCD.

从而P、O、Q三点在一条直线上,所以PQ⊥平面ABCD.

(Ⅱ)由题设知,ABCD是正方形,所以AC⊥BD.

由(Ⅰ),QO⊥平面ABCD. 故可分别以直线CA、DB、QP为x轴、y轴、z轴建立空间直角坐标系(如图),由题条件,相关各点的坐标分别是P(0,0,1),A(,0,0),Q(0,0,-2),B(0,,0).

所以

于是.

从而异面直线AQ与PB所成的角是.

(Ⅲ)由(Ⅱ),点D的坐标是(0,-,0),, 

,设是平面QAD的一个法向量,由

.

取x=1,得.

所以点P到平面QAD的距离.

考点:本题主要考查立体几何中的垂直关系,距离及角的计算。

点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程。本题解法较多,特别是求角及距离时,运用了“向量法”,实现了问题的有效转化。对考生计算能力要求较高

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网