题目内容
定义在上的奇函数,,且当时, (为常数),则的值为 .
解析试题分析:由题意,,,则,,当时,,.考点:奇函数的定义与性质,函数值.
函数的定义域是 .
对任意正整数表示不大于a的最大整数,则_________.
已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:①f(2)=0;②x=-4为函数y=f(x)图象的一条对称轴;③函数y=f(x)在[8,10]上单调递增;④若方程f(x)=m在[-6,-2]上的两根为x1,x2,则x1+x2=-8.以上命题中所有正确命题的序号为________.
求“方程的解”有如下解题思路:设,则在上单调递减,且,所以原方程有唯一解.类比上述解题思路,方程的解为 .
函数的递增区间是___________________ .
若直角坐标平面内两点P,Q满足条件:①P,Q都在函数f(x)的图像上;②P,Q关于原点对称,则称点对(P,Q)是函数f(x)的一个“友好点对”(点对(P,Q)与点对(Q,P)看做同一个“友好点对”).已知函数f(x)=,则f(x)的“友好点对”有________个.
[2012·江苏高考]已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为________.
已知符号函数sgn(x)=则函数f(x)=sgn(ln x)-ln2x的零点个数为________.