ÌâÄ¿ÄÚÈÝ
¸ø³öÏÂÁÐÎå¸öÃüÌ⣺ÆäÖÐÕýÈ·µÄÃüÌâÓÐ______£¨ÌîÐòºÅ£©£®
¢Ùº¯Êýy=sinx£¨x¡Ê[-¦Ð£¬¦Ð]£©µÄͼÏóÓëxÖáΧ³ÉµÄͼÐεÄÃæ»ýS=
sinxdx£»
¢Ú
=
+
£»
¢ÛÔÚ£¨a+b£©nµÄÕ¹¿ªÊ½ÖУ¬ÆæÊýÏîµÄ¶þÏîʽϵÊýÖ®ºÍµÈÓÚżÊýÏîµÄ¶þÏîʽϵÊýÖ®ºÍ£»
¢Üi+i2+i3+¡i2012=0£»
¢ÝÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷²»µÈʽ
+
+
+¡+
£¾
£¬(n¡Ý2£¬n¡ÊN*)µÄ¹ý³ÌÖУ¬ÓɼÙÉèn=k³ÉÁ¢ÍƵ½n=k+1³ÉÁ¢Ê±£¬Ö»ÐèÖ¤Ã÷
+
+
+¡+
+
+
£¾
¼´¿É£®
¢Ùº¯Êýy=sinx£¨x¡Ê[-¦Ð£¬¦Ð]£©µÄͼÏóÓëxÖáΧ³ÉµÄͼÐεÄÃæ»ýS=
¡Ò | ¦Ð-¦Ð |
¢Ú
C | r+1n+1 |
C | r+1n |
C | rn |
¢ÛÔÚ£¨a+b£©nµÄÕ¹¿ªÊ½ÖУ¬ÆæÊýÏîµÄ¶þÏîʽϵÊýÖ®ºÍµÈÓÚżÊýÏîµÄ¶þÏîʽϵÊýÖ®ºÍ£»
¢Üi+i2+i3+¡i2012=0£»
¢ÝÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷²»µÈʽ
1 |
n+1 |
1 |
n+2 |
1 |
n+3 |
1 |
2n |
13 |
24 |
1 |
k+1 |
1 |
k+2 |
1 |
k+3 |
1 |
2k |
1 |
2k+1 |
1 |
2(k+1) |
13 |
24 |
¢Ùº¯Êýy=sinx£¨x¡Ê[-¦Ð£¬¦Ð]£©µÄͼÏóÓëxÖáΧ³ÉµÄͼÐεÄÃæ»ý=-
sinxdx+
sinxdx=2¡Ácosx
=4£¬¶øÃæ»ýS=
sinxdx=0£¬Òò´Ë²»ÕýÈ·£»
¢ÚÓÉ×éºÏÊýµÄÐÔÖÊ¿ÉÖª£ºÔÚn¡ÊN*£¬r¡ÊNµÄÌõ¼þÏÂËù¸øµÄʽ×Ó³ÉÁ¢£¬Òò´ËÕýÈ·£»
¢ÛÔÚ£¨a+b£©nµÄÕ¹¿ªÊ½ÖУ¬·Ö±ðÁîa=1£¬b=-1£¬Ôò
+
+¡=
+
+¡£¬¼´ÆæÊýÏîµÄ¶þÏîʽϵÊýÖ®ºÍµÈÓÚżÊýÏîµÄ¶þÏîʽϵÊýÖ®ºÍ£¬Òò´ËÕýÈ·£»
¢Ü¸ù¾Ýi4n=1£¬i4n+1=i£¬i4n+2=-1£¬i4n+3=-i£¬Ôòi+i2+i3+¡i2012=
=
=0£¬Òò´ËÕýÈ·£»
¢ÝÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷²»µÈʽ
+
+
+¡+
£¾
£¬(n¡Ý2£¬n¡ÊN*)µÄ¹ý³ÌÖУ¬ÓɼÙÉèn=k³ÉÁ¢ÍƵ½n=k+1³ÉÁ¢£¬
Ö»ÐèÖ¤Ã÷
+
+¡+
£¾
³ÉÁ¢¼´¿É£¬Òò´Ë¢Ý²»ÕýÈ·£®
×ÛÉÏ¿ÉÖª£ºÖ»ÓТڢۢÜÕýÈ·£®
¹Ê´ð°¸Îª¢Ú¢Û¢Ü£®
¡Ò | 0-¦Ð |
¡Ò | ¦Ð0 |
| | 0-¦Ð |
¡Ò | ¦Ð-¦Ð |
¢ÚÓÉ×éºÏÊýµÄÐÔÖÊ¿ÉÖª£ºÔÚn¡ÊN*£¬r¡ÊNµÄÌõ¼þÏÂËù¸øµÄʽ×Ó³ÉÁ¢£¬Òò´ËÕýÈ·£»
¢ÛÔÚ£¨a+b£©nµÄÕ¹¿ªÊ½ÖУ¬·Ö±ðÁîa=1£¬b=-1£¬Ôò
C | 0n |
C | 2n |
C | 1n |
C | 3n |
¢Ü¸ù¾Ýi4n=1£¬i4n+1=i£¬i4n+2=-1£¬i4n+3=-i£¬Ôòi+i2+i3+¡i2012=
i(i2012-1) |
i-1 |
i(1-1) |
i-1 |
¢ÝÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷²»µÈʽ
1 |
n+1 |
1 |
n+2 |
1 |
n+3 |
1 |
2n |
13 |
24 |
Ö»ÐèÖ¤Ã÷
1 |
(k+1)+1 |
1 |
(k+1)+2 |
1 |
2(k+1) |
13 |
24 |
×ÛÉÏ¿ÉÖª£ºÖ»ÓТڢۢÜÕýÈ·£®
¹Ê´ð°¸Îª¢Ú¢Û¢Ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿