题目内容
已知直线l的方程为x-2y-2=0,数列{an}满足a1=2,其前n项和为Sn,点(an+1,Sn)在直线l上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)在an和an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列,令Tn=
+
+…+
,试证明Tn<
.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)在an和an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列,令Tn=
1 |
d1 |
1 |
d2 |
1 |
dn |
15 |
16 |
分析:(Ⅰ)依题意,可求得{an}为首项是2,公比是3的等比数列,从而可求其通项公式;
(Ⅱ)由(Ⅰ)知,2•3n=2•3n-1+(n+1)dn,可求得
=
•(
)n-1,从而可得Tn=
•(
)0+
•(
)1+…+
•(
)n-1,利用错位相减法即可求得Tn,从而可证得结论.
(Ⅱ)由(Ⅰ)知,2•3n=2•3n-1+(n+1)dn,可求得
1 |
dn |
n+1 |
4 |
1 |
3 |
2 |
4 |
1 |
3 |
3 |
4 |
1 |
3 |
n+1 |
4 |
1 |
3 |
解答:解:(Ⅰ)∵点(an+1,Sn)在直线l:x-2y-2=0上,
∴an+1-2Sn-2=0,
∴当n≥2时,an-2Sn-1-2=0,
∴an+1-an=2(Sn-Sn-1)=2an,即an+1=3an,
又a2-2S1-2=0,
∴a2=2a1+2=6=3a1,
∴{an}为首项是2,公比是3的等比数列,
∴an=2•3n-1.
(2)∵an+1=an+(n+1)dn,
∴2•3n=2•3n-1+(n+1)dn,
∴
=
•(
)n-1,
∴Tn=
•(
)0+
•(
)1+…+
•(
)n-1,
Tn=
•(
)1+
•(
)2+…+
•(
)n,
两式相减得:
Tn=
•(
)0+
•(
)1+
•(
)2+…+
•(
)n-1-
•(
)n,
=
+
•
-
•(
)n
=
+
(1-(
)n-1)-
•(
)n,
∴Tn=
-(
+
)•(
)n<
.
∴an+1-2Sn-2=0,
∴当n≥2时,an-2Sn-1-2=0,
∴an+1-an=2(Sn-Sn-1)=2an,即an+1=3an,
又a2-2S1-2=0,
∴a2=2a1+2=6=3a1,
∴{an}为首项是2,公比是3的等比数列,
∴an=2•3n-1.
(2)∵an+1=an+(n+1)dn,
∴2•3n=2•3n-1+(n+1)dn,
∴
1 |
dn |
n+1 |
4 |
1 |
3 |
∴Tn=
2 |
4 |
1 |
3 |
3 |
4 |
1 |
3 |
n+1 |
4 |
1 |
3 |
1 |
3 |
2 |
4 |
1 |
3 |
3 |
4 |
1 |
3 |
n+1 |
4 |
1 |
3 |
两式相减得:
2 |
3 |
2 |
4 |
1 |
3 |
1 |
4 |
1 |
3 |
1 |
4 |
1 |
3 |
1 |
4 |
1 |
3 |
n+1 |
4 |
1 |
3 |
=
1 |
2 |
1 |
4 |
| ||||
1-
|
n+1 |
4 |
1 |
3 |
=
1 |
2 |
1 |
8 |
1 |
3 |
n+1 |
4 |
1 |
3 |
∴Tn=
15 |
16 |
9 |
16 |
n+1 |
4 |
1 |
3 |
15 |
16 |
点评:本题考查数列的求和,考查等比数列的确定及其通项公式的应用,突出考查错位相减法,考查运算与证明能力,属于难题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目