题目内容
设![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_ST/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_ST/4.png)
【答案】分析:设出
的坐标,利用2
-
=(-1,1)求得x和y,进而求得两向量的积,和两向量的模,最后利用平面向量的数量积的法则求得cosθ的值.
解答:解:设
=(x,y),
故2
-
=(2x-3,2y-3)=(-1,1)?x=1,y=2,
即b=(1,2),则
•
=(3,3)•(1,2)=9,|
|=3
,|b|=
,
故cosθ=
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_DA/12.png)
故答案为:![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_DA/13.png)
点评:本题考查平面向量的数量积的坐标运算,考查了学生对向量基础知识的应用.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_DA/2.png)
解答:解:设
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_DA/3.png)
故2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_DA/5.png)
即b=(1,2),则
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_DA/10.png)
故cosθ=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_DA/12.png)
故答案为:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123721212982256/SYS201310251237212129822012_DA/13.png)
点评:本题考查平面向量的数量积的坐标运算,考查了学生对向量基础知识的应用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目