题目内容
【题目】某轮船公司年初以200万元购进一艘轮船,以每年40万元的价格出租给海运公司.轮船公司负责轮船的维护,第一年维护费为4万元,随着轮船的使用与磨损,以后每年的维护费比上一年多2万元,同时该轮船第年末可以以万元的价格出售.
(1)写出轮船公司到第年末所得总利润万元关于的函数解析式,并求的最大值;
(2)为使轮船公司年平均利润最大,轮船公司应在第几年末出售轮船?
【答案】(1) ,191万元 (2) 第7年末
【解析】
(1)总利润等于总收入减去总支出,由题意计算出总维护费和总收入,即可得到函数解析式,再由二次函数的性质及的取值范围,可得最大值。
(2)记轮船公司年平均利润为(万元),则,再用基本不等式分析最值.
解:(1)轮船公司年的总维护费为,
总收入为
所以轮船公司到第年末所得总利润,
因为,所以(万元).
(2)记轮船公司年平均利润为(万元),则.
因为(当且仅当时,等号成立),所以.
故为使轮船公司年平均利润最大,轮船公司应在第7年末出售轮船.
【题目】团体购买公园门票,票价如下表:
购票人数 | 1~50 | 51~100 | 100以上 |
门票价格 | 13元/人 | 11元/人 | 9元/人 |
现某单位要组织其市场部和生产部的员工游览该公园,若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元,那么这两个部门的人数之差为( )
A. B. C. D.
【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:
间隔时间(分钟) | 10 | 11 | 12 | 13 | 14 | 15 |
等候人数(人) | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值不超过1,则称所求方程是“恰当回归方程”.
(1)若选取的是后面4组数据,求关于的线性回归方程;
(2)判断(1)中的方程是否是“恰当回归方程”;
(3)为了使等候的乘客不超过35人,试用(1)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为: ,.