题目内容
数列{}的通项公式为=2n-9,n∈N﹡,当前n项和达到最小时,n等于_________________.
4
解析试题分析:先由an=2n-49,判断数列{an}为等差数列,从而Sn =n2-8n,结合二次函数的性质可求.
解:由=2n-9可得- =2(n+1)-9-(2n-9)=2是常数,∴数列{an}为等差数列,∴=,且a1=2×1-9=-7,∴ ==n2-8n=(n-4)2-162,结合二次函数的性质可得,当n=4时,和有最小值.故答案为:4.
考点:等差数列的通项公式和求和公式运用
点评:本题的考点是等差数列的通项公式,主要考查了等差数列的求和公式的应用,解题时要认真审题,仔细解答,注意数列的函数性质的应用.
练习册系列答案
相关题目