题目内容

函数是偶函数,它在上是减函数.若,则的取值范围是

A. B.
C. D.

C

解析试题分析:根据偶函数的性质将f(lgx)>f(1)转化成f(|lgx|)>f(1),然后利用单调性建立不等关系,解之即可.
:∵f(x)定义在实数集R上的偶函数,
∴f(-x)=f(x)=f(|x|)则f(lgx)>f(1),即f(|lgx|)>f(1),
∵在区间[0,+∞)上是单调增函数
∴|lgx|<1即1>lgx>-1
<x<10,故答案为:(,10),选C.
考点:本题主要是考查函数奇偶性的应用,属于中档题
点评:解题的关键是由偶函数的性质,将f(lgx)≤f(1)转化成f(|lgx|)≤f(1),,同时利用单调性得到不等式组求解。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网