题目内容
(14分)已知定义在上的函数是偶函数,且时,,(1)当时,求解析式;(2)写出的单调递增区间。
解:(1)时,………7分(2)和…………14分 (要有详细解答过程)
解析
(本小题满分14分)已知定义在上的函数同时满足:①对任意,都有②当时,,试解决下列问题: (Ⅰ)求在时,的表达式;(Ⅱ)若关于的方程在上有实数解,求实数的取值范围;(Ⅲ)若对任意,关于的不等式都成立,求实数的取值范围.
.(本小题满分14分)已知定义在上的奇函数满足,且对任意有.(Ⅰ)判断在上的奇偶性,并加以证明.(Ⅱ)令,,求数列的通项公式.(Ⅲ)设为的前项和,若对恒成立,求的最大值.
(本小题满分14分)已知定义在实数集上的函数fn(x)=xn,n∈N*,其导函数记为,且满足,a,x1,x2为常数,x1≠x2.
(1)试求a的值;
(2)记函数,x∈(0,e],若F(x)的最小值为6,求实数b的值;
(3)对于(2)中的b,设函数,A(x1,y1),B(x2,y2)(x1<x2)是函数g(x)图象上两点,若,试判断x0,x1,x2的大小,并加以证明.
(本题满分14分)已知定义在R上的函数,其中a为常数.
(1)若x=1是函数的一个极值点,求a的值;
(2)若函数在区间(-1,0)上是增函数,求a的取值范围;
(3)若函数,在x=0处取得最大值,求正数a的取值范围.
(本题满分14分)已知定义在R上的函数,其中a为常数.(1)若x=1是函数的一个极值点,求a的值;(2)若函数在区间(-1,0)上是增函数,求a的取值范围;(3)若函数,在x=0处取得最大值,求正数a的取值范围.