题目内容
15.如图,跳伞塔CD高4,在塔顶测得地面上两点A,B的俯角分别是30°,45°,又测得∠ADB=30°,求AB两地的距离.分析 先确定AD,BD的长,再利用余弦定理,即可求得AB的长.
解答 解:∵∠BCD=90°-45°=45°,
∴在Rt△BCD中,BD=4×tan45°=4,
又∵∠ACD=90°-30°=60°,
∴在Rt△ACD中,AD=4×tan60°=4$\sqrt{3}$
在△ABD中,AB=$\sqrt{{4}^{2}+(4\sqrt{3})^{2}-2×4×4\sqrt{3}×cos30°}$=4.
点评 本题考查解三角形的实际应用,考查余弦定理,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
6.如图,将一张边长为1的正方形纸ABCD折叠,使得点B始终落在边AD上,则折起部分面积的最小值为( )
A. | $\frac{1}{4}$ | B. | $\frac{3}{8}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{2}$ |
4.从数字0,1,2,3,4,5中任取两个数组成两位数,其中奇数的概率为( )
A. | $\frac{2}{5}$ | B. | $\frac{12}{25}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
5.2015年3月份全国两会召开后,中国足球引起重视,某校对学生是否喜欢足球进行了抽样调查,男女生各抽了50名,相关数据如下表所示:
(1)用分层抽样的方法在喜欢足球的学生中随机抽取6名,男生应该抽取几名?
(2)在上述抽取的6名学生中任取2名,求恰有1名女生的概率.
(3)能否在犯错误的概率不超过0.005的前提下认为性别与喜欢足球有关系?
参考公式及数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
不喜欢足球 | 喜欢足球 | 总计 | |
男生 | 18 | 32 | 50 |
女生 | 34 | 16 | 50 |
总计 | 52 | 48 | 100 |
(2)在上述抽取的6名学生中任取2名,求恰有1名女生的概率.
(3)能否在犯错误的概率不超过0.005的前提下认为性别与喜欢足球有关系?
参考公式及数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K≥k0) | 0.010 | 0.005 | 0.001 |
k0 | 6.635 | 7.879 | 10.828 |