题目内容
曲线 在点处的切线平行于直线, 则点的坐标是()
A. | B. | C.和 | D.和 |
C
先设切点坐标,然后对f(x)进行求导,根据曲线在P0点处的切线平行于直线y=4x建立等式,从而求出切点的横坐标,代入到f(x)即可得到答案.
解答:解:设P0点的坐标为(a,f(a)),
由f(x)=x3+x-2,得到f′(x)=3x2+1,
由曲线在P0点处的切线平行于直线y=4x,得到切线方程的斜率为4,
即f′(a)=3a2+1=4,解得a=1或a=-1,
当a=1时,f(1)=0;当a=-1时,f(-1)=-4,
则P0点的坐标为(1,0)或(-1,-4).
故选C.
解答:解:设P0点的坐标为(a,f(a)),
由f(x)=x3+x-2,得到f′(x)=3x2+1,
由曲线在P0点处的切线平行于直线y=4x,得到切线方程的斜率为4,
即f′(a)=3a2+1=4,解得a=1或a=-1,
当a=1时,f(1)=0;当a=-1时,f(-1)=-4,
则P0点的坐标为(1,0)或(-1,-4).
故选C.
练习册系列答案
相关题目