题目内容
【题目】已知集合A={x|0<x<3},B= ,则集合A∩(RB)为( )
A.[0,1)
B.(0,1)
C.[1,3)
D.(1,3)
【答案】B
【解析】解:由y= ,得到x2﹣1≥0,
解得:x≥1或x≤﹣1,即B=(﹣∞,﹣1]∪[1,+∞),
∵全集为R,A=(0,3),
∴RB=(﹣1,1),
则A∩(RB)=(0,1).
故选:B.
【考点精析】利用交、并、补集的混合运算对题目进行判断即可得到答案,需要熟知求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.
练习册系列答案
相关题目
【题目】为了让学生更多的了解“数学史”知识,梁才学校高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:
序号 | 分组 | 组中值 | 频数 | 频率 |
(i) | (分数) | (Gi) | (人数) | (Fi) |
1 | 65 | ① | 0.12 | |
2 | 75 | 20 | ② | |
3 | 85 | ③ | 0.24 | |
4 | 95 | ④ | ⑤ | |
合计 | 50 | 1 |
(1)填充频率分布表中的空格;
(2)为鼓励更多的学生了解“数学史”知识,成绩不低于85分的同学能获奖,请估计在
参加的800名学生中大概有多少名学生获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的S的值.