题目内容
17.双曲线x2-3y2=9的焦距为( )| A. | 4$\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{6}$ | D. | $\sqrt{6}$ |
分析 求出双曲线的,即可求解双曲线x2-3y2=9的焦距.
解答 解:双曲线x2-3y2=9的实半轴a=3,虚半轴b=$\sqrt{3}$,
则c=$\sqrt{9+3}$=$2\sqrt{3}$.
双曲线x2-3y2=9的焦距为:4$\sqrt{3}$.
故选:A.
点评 本题考查双曲线的简单性质的应用,是基础题.
练习册系列答案
相关题目
8.已知m,n是不同的直线,α,β是不同的平面,则下列结论正确的是( )
| A. | 若m∥α,n∥α则m∥n | B. | 若m?α,m∥n,则n∥α | C. | 若m⊥α,α⊥β,则m∥β | D. | 若m⊥α,n∥α,则m⊥n |
5.Rt△ABC的角A,B,C所对的边分别是a,b,c(其中c为斜边),分别以a,b,c边所在的直线为旋转轴,将△ABC旋转一周得到的几何体的体积分别是V1,V2,V3,则( )
| A. | V1+V2=V3 | B. | $\frac{1}{V_1}+\frac{1}{V_2}=\frac{1}{V_3}$ | ||
| C. | $V_1^2+V_2^2=V_3^2$ | D. | $\frac{1}{V_1^2}+\frac{1}{V_2^2}=\frac{1}{V_3^2}$ |
9.设f(x)是定义在R上的增函数,其导函数为f′(x),且满足$\frac{f(x)}{f′(x)}$+x<1,下面不等式正确的是( )
| A. | f(x2)<f(x-1) | B. | (x-1)f(x)<xf(x+1) | C. | f(x)>x-1 | D. | f(x)<0 |
6.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的左、右焦点分别为F1,F2,过F2的直线与双曲线C的右支相交于P,Q两点,若PQ⊥PF1,且|PF1|=|PQ|,则双曲线的离心率e=( )
| A. | $\sqrt{2}$+1 | B. | 2$\sqrt{2}$+1 | C. | $\sqrt{5+2\sqrt{2}}$ | D. | $\sqrt{5-2\sqrt{2}}$ |
7.已知A,B,C,D是球面上的四个点,其中A,B,C在同一圆周上,若D不在A,B,C所在的圆周上,则从这四点中的任意两点的连线中取2条,这两条直线是异面直线的概率等于( )
| A. | $\frac{1}{6}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |