题目内容
18.函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示.(1)求f(x)的解析式;
(2)将y=f(x)的图象向右平移φ个单位长度,所得函数y=g(x)的图象关y轴对称,求φ的最小正值.
分析 (1)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
(2)由条件利用y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,可得-$\frac{3}{2}$φ+$\frac{π}{4}$=kπ+$\frac{π}{2}$,k∈Z,由此求得φ的最小正值.
解答 解:(1)由函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象,
可得A=2,$\frac{T}{4}$=$\frac{1}{4}•\frac{2π}{ω}$=$\frac{π}{6}$+$\frac{π}{6}$,求得ω=$\frac{3}{2}$,
再根据五点法作图可得 $\frac{3}{2}$×$\frac{π}{6}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{4}$,故f(x)=2sin($\frac{3}{2}$x+$\frac{π}{4}$).
(2)将y=f(x)的图象向右平移φ个单位长度,
可得g(x)=2sin[$\frac{3}{2}$(x-φ)+$\frac{π}{4}$]=2sin($\frac{3}{2}$x-$\frac{3}{2}$φ+$\frac{π}{4}$)的图象,
再根据所得函数y=g(x)的图象关y轴对称,可得-$\frac{3}{2}$φ+$\frac{π}{4}$=kπ+$\frac{π}{2}$,即φ=-$\frac{2k}{3}$π-$\frac{π}{6}$,k∈Z.
求得φ的最小正值为$\frac{π}{2}$.
点评 本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性.由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.
A. | sinα=sinβ | B. | cosα=cosβ | C. | tanα=tanβ | D. | sinα=cosβ |