题目内容
9.已知抛物线y2=2x与过点M(m,0)(m>0)的直线交于A(x1,y1),B(x2,y2)两点.若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-1,则实数m的值为1.分析 设直线AB的方程为x=ty+m,(m>0),与抛物线的方程联立,消去x,整理成关于y的一元二次方程,设出A(x1,y1)、B(x2,y2)两点坐标,再由$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1•x2+y1•y2,由韦达定理可以求得答案.
解答 解:设直线AB的方程为x=ty+m,(m>0),
由$\left\{\begin{array}{l}{x=ty+m}\\{{y}^{2}=2x}\end{array}\right.$,得y2-2ty-2m=0,
判别式为4t2+4m>0恒成立,
设A(x1,y1),B(x2,y2),
则 y1+y2=2t,y1y2=-2m,
∴x1•x2=(ty1+m)•(ty2+m)=t2y1•y2+m2+mt(y1+y2)
=-2mt2+m2+2mt2=m2,
即有$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1•x2+y1•y2=m2-2m=-1,
解方程可得m=1.
故答案为:1.
点评 本题考查直线与抛物线的位置关系,考查直线方程和抛物线的方程联立,运用韦达定理,同时考查向量的数量积的坐标表示,考查运算能力,属于中档题.
练习册系列答案
相关题目