ÌâÄ¿ÄÚÈÝ
Éè{an}ÊǵȲîÊýÁУ¬ÆäÇ°nÏîµÄºÍΪSn£®£¨1£©ÇóÖ¤£ºÊýÁÐ{
Sn |
n |
£¨2£©Éè{an}¸÷ÏîΪÕýÊý£¬a1=
1 |
15 |
Sm |
Sp |
Sn |
£¨3£©Éèbn=aan£¨aΪ³£Êý£¬a£¾0£¬a¡Ù1£¬a1¡Ùa2£©£¬ÊýÁÐ{bn}Ç°nÏîºÍΪTn£®¶ÔÓÚÕýÕûÊýc£¬d£¬e£¬f£¬Èôc£¼d£¼e£¼f£¬ÇÒc+f=d+e£¬ÊԱȽϣ¨Tc£©-1+£¨Tf£©-1Ó루Td£©-1+£¨Te£©-1µÄ´óС£®
·ÖÎö£º£¨1£©{an}ÊǵȲîÊýÁУ¬¿ÉÒÔÓÃÊ×Ïîa1ºÍ¹«²îdÀ´±íʾǰnÏîµÄºÍΪSnÔÙ½«Æä´úÈë
µÄ±í´ïʽ£¬ÔÙÓÃÏàÁÚÁ½Ïî×÷²îµÄ·½·¨£¬µÃµ½ÏàÁÚÁ½ÏîµÄ²îΪ³£Êý£¬´Ó¶øÖ¤³öÊýÁÐ{
}ΪµÈ²îÊýÁУ»
£¨2£©¸ù¾Ý£¨1£©ÖеĽáÂÛ£¬ÏÈÉè
=¦Án+¦Â£¨ÆäÖЦÁ¡¢¦ÂΪ³£Êý£©£¬´Ó¶øSn=¦Án2+¦Ân£®½«´Ëʽ´úÈëÒÑ֪ʽÖеڶþ¸öµÈʽ£¬Í¨¹ýÕûÀí±äÐεæÂ=0£¬ÔÙ½áºÏ½áºÏÊ×Ïîa1=
£¬µÃ¦Á=
£¬¹ÊSn=
n2£®È»ºóÀûÓô˱í´ïʽ½«¼¯ºÏ{£¨x£¬y£©|Sx•Sy=1£¬x¡ÊN*£¬y¡ÊN*}»¯¼òΪ{£¨x£¬y£©|xy=15£¬x¡ÊN*£¬y¡ÊN*}£¬¸ù¾Ý15ÓÐ4¸öÕýÔ¼Êý£¬µÃµ½Âú×ãÌõ¼þµÄÊý¶Ô£¨x£¬y£©µÄ¸öÊýΪ4¸ö£»
£¨3£©¸ù¾ÝµÈ±ÈÊýÁеĶ¨ÒåÖ¤³öÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¬È»ºóÖ¤Ã÷µÈ±ÈÊýÁеÄÒ»¸ö½áÂÛ£ºµ±n£¾mʱ£¬Tn£¾Tn-Tn-m=qn-mTm£®ÀûÓÃÕâ¸ö½áÂÛ£¬½áºÏc+f=d+e¿ÉÒÔÖ¤µÃ£¨Tc£©-1-£¨Td£©-1±È£¨Te£©-1-£¨Tf£©-1´ó£¬×îºóͨ¹ýÒÆÏîÖ¤µÃ£¨Tc£©-1+£¨Tf£©-1£¾£¨Td£©-1+£¨Te£©-1£®
Sn |
n |
Sn |
n |
£¨2£©¸ù¾Ý£¨1£©ÖеĽáÂÛ£¬ÏÈÉè
Sn |
n |
1 |
15 |
1 |
15 |
1 |
15 |
£¨3£©¸ù¾ÝµÈ±ÈÊýÁеĶ¨ÒåÖ¤³öÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¬È»ºóÖ¤Ã÷µÈ±ÈÊýÁеÄÒ»¸ö½áÂÛ£ºµ±n£¾mʱ£¬Tn£¾Tn-Tn-m=qn-mTm£®ÀûÓÃÕâ¸ö½áÂÛ£¬½áºÏc+f=d+e¿ÉÒÔÖ¤µÃ£¨Tc£©-1-£¨Td£©-1±È£¨Te£©-1-£¨Tf£©-1´ó£¬×îºóͨ¹ýÒÆÏîÖ¤µÃ£¨Tc£©-1+£¨Tf£©-1£¾£¨Td£©-1+£¨Te£©-1£®
½â´ð£º½â£º£¨1£©{an}ΪµÈ²îÊýÁУ¬ÉèÆ乫²îΪd£¬Ôò
=
=a 1+
d£¬ÓÚÊÇ
-
=a 1+
d-(aq+
d)=
£¨³£Êý£©£¬
¹ÊÊýÁÐ{
}ÊÇa1ΪÊ×Ï¹«²îΪ
µÄµÈ²îÊýÁУ®
£¨2£©ÒòΪ{an}ΪµÈ²îÊýÁУ¬Ëù{
}ÊǵȲîÊýÁУ¬
ÓÚÊÇ¿ÉÉè
=¦Án+¦Â£¨ÆäÖЦÁ¡¢¦ÂΪ³£Êý£©£¬´Ó¶øSn=¦Án2+¦Ân£®
ÒòΪm+p=2n£¬ËùÒÔÓÉ
+
=2
Á½±ßƽ·½µÃ
Sm+Sp+2
=4Sn£¬¼´µÃa(m 2+p 2)+2
=4an 2+2¦Ân=a(m+p) 2+2¦Ân£¬
ÓÚÊÇ
=¦Ámp+¦Ân£¬Á½±ßƽ·½²¢ÕûÀíµÃ¦Â2£¨m-p£©2=0£®
ÒòΪm¡Ùp£¬ËùÒÔ¦Â=0£¬´Ó¶øSn=¦Án2£¬¶øa1=
£¬ËùÒÔ¦Á=
£®
¹ÊSn=
n2£®ËùÒÔ{£¨x£¬y£©|Sx•Sy=1£¬x¡ÊN*£¬y¡ÊN*}={£¨x£¬y£©|(
xy) 2=1£¬x¡ÊN*£¬y¡ÊN*}={£¨x£¬y£©|xy=15£¬x¡ÊN*£¬y¡ÊN*}£®
ÒòΪ15ÓÐ4¸öÕýÔ¼Êý£¬ËùÒÔÊý¶Ô£¨x£¬y£©µÄ¸öÊýΪ4¸ö£®
¼´¼¯ºÏ{£¨x£¬y£©|Sx•Sy=1£¬x¡ÊN*£¬y¡ÊN*}ÖеÄÔªËظöÊýΪ4£®
£¨3£©ÒòΪ
=
=a d£¨³£Êý£©£¬
ËùÒÔÊýÁÐ{bn}ÊÇÕýÏîµÈ±ÈÊýÁУ®
ÒòΪa1¡Ùa2£¬ËùÒԵȱÈÊýÁÐ{bn}µÄ¹«±Èq¡Ù1£®
£¨Tc£©-1+£¨Tf£©-1Ó루Td£©-1+£¨Te£©-1µÄ´óС¹Øϵ¼´£¨Tc£©-1-£¨Td£©-1Ó루Te£©-1-£¨Tf£©-1µÄ´óС¹Øϵ
×¢Òâµ½µ±n£¾mʱ£¬Tn£¾Tn-Tn-m=qn-mTm£®
ËùÒÔTd£¾qd-cTcÇÒTf£¾qf-eTe?£¨Tc£©-1-£¨Td£©-1=
£¾
=£¨Te£©-1-£¨Tf£©-1
ÒÆÏî¿ÉµÃ£¨Tc£©-1+£¨Tf£©-1£¾£¨Td£©-1+£¨Te£©-1£®
S n |
n |
na 1+
| ||
n |
n-1 |
2 |
Sn+1 |
n+1 |
S n |
n |
n |
2 |
n-1 |
2 |
d |
2 |
¹ÊÊýÁÐ{
Sn |
n |
d |
2 |
£¨2£©ÒòΪ{an}ΪµÈ²îÊýÁУ¬Ëù{
Sn |
n |
ÓÚÊÇ¿ÉÉè
Sn |
n |
ÒòΪm+p=2n£¬ËùÒÔÓÉ
Sm |
Sp |
Sn |
Sm+Sp+2
Sm |
Sp |
Sm |
Sp |
ÓÚÊÇ
Sm Sn |
ÒòΪm¡Ùp£¬ËùÒÔ¦Â=0£¬´Ó¶øSn=¦Án2£¬¶øa1=
1 |
15 |
1 |
15 |
¹ÊSn=
1 |
15 |
1 |
15 |
ÒòΪ15ÓÐ4¸öÕýÔ¼Êý£¬ËùÒÔÊý¶Ô£¨x£¬y£©µÄ¸öÊýΪ4¸ö£®
¼´¼¯ºÏ{£¨x£¬y£©|Sx•Sy=1£¬x¡ÊN*£¬y¡ÊN*}ÖеÄÔªËظöÊýΪ4£®
£¨3£©ÒòΪ
b n+1 |
b n |
aan+1 |
aan |
ËùÒÔÊýÁÐ{bn}ÊÇÕýÏîµÈ±ÈÊýÁУ®
ÒòΪa1¡Ùa2£¬ËùÒԵȱÈÊýÁÐ{bn}µÄ¹«±Èq¡Ù1£®
£¨Tc£©-1+£¨Tf£©-1Ó루Td£©-1+£¨Te£©-1µÄ´óС¹Øϵ¼´£¨Tc£©-1-£¨Td£©-1Ó루Te£©-1-£¨Tf£©-1µÄ´óС¹Øϵ
×¢Òâµ½µ±n£¾mʱ£¬Tn£¾Tn-Tn-m=qn-mTm£®
ËùÒÔTd£¾qd-cTcÇÒTf£¾qf-eTe?£¨Tc£©-1-£¨Td£©-1=
T d-T c |
T dTc |
T f-T e |
T eTf |
ÒÆÏî¿ÉµÃ£¨Tc£©-1+£¨Tf£©-1£¾£¨Td£©-1+£¨Te£©-1£®
µãÆÀ£º±¾ÌâÌâÊǺ¯ÊýÓëÊýÁС¢²»µÈʽµÄ×ۺϣ¬ÊÇÒ»µÀÄÑÌ⣮×ÅÖØ¿¼²éÊýÁеĺ¯ÊýÐÔÐÔÖÊ¡¢µÈ²îÊýÁеĶ¨ÒåºÍÐÔÖʵÈ֪ʶ£¬¿¼²éÁËת»¯¹¹Ôì·¨¡¢·ÅËõ·¨¡¢ÊýÐνáºÏµÈ˼Ïë·½·¨£®
![](http://thumb.zyjl.cn/images/loading.gif)
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Éè{an}ÊǵȲîÊýÁУ¬a1+a3+a5=9£¬a6=9£®ÔòÕâ¸öÊýÁеÄÇ°6ÏîºÍµÈÓÚ£¨¡¡¡¡£©
A¡¢12 | B¡¢24 | C¡¢36 | D¡¢48 |