题目内容

精英家教网如图,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=2,CD=
3
AB=
3
,E、F
分别为AC、AD上的动点.
(1)若
AE
EC
=
AF
FD
,求证:平面BEF⊥平面ABC;
(2)若
AE
EC
=1
AF
FD
=2
,求平面BEF与平面BCD所成的锐二面角的大小.
分析:(1)由已知中AB⊥平面BCD,∠BCD=90°,由线面垂直的判定定理可得CD⊥平面ABC,由
AE
EC
=
AF
FD
,根据平行线分线段成比例定理,可得EF∥CD,由线面垂直的第二判定定理可得EF⊥平面ABC,再由面面垂直的判定定理,可得平面BEF⊥平面ABC;
(2)方法一(向量法)建立空间直角坐标系C-xyz,根据BC=2,CD=
3
AB=
3
,E、F
分别为AC、AD上的动点,
AE
EC
=1
AF
FD
=2
,分别求出平面BEF与平面BCD的法向量,代入向量夹角公式,即可求出平面BEF与平面BCD所成的锐二面角的大小.
方法二(几何法)延长EF,交CD的延长线于G,连接BG,过E作EH⊥BC于H,可得EH⊥平面BCD,过H作HK⊥BG于K,连接EK,则∠EKH即为所求二面角的平面角,解Rt△BCD即可求出平面BEF与平面BCD所成的锐二面角的大小.
解答:证明:精英家教网(1)∵AB⊥平面BCD,
∴AB⊥CD.
又∵CD⊥BC,
∴CD⊥平面ABC.
AE
EC
=
AF
FD

∴EF∥CD.
∴EF⊥平面ABC,
∵EF?平面BEF,
∴平面BEF⊥平面ABC.
解:(2)解法一(向量法):
如图建立空间直角坐标系C-xyz
B(2,0,0),D(0,
3
,0),A(2,0,
3
)

AE
EC
=1

E(1,0,
3
2
)

AF
FD
=2

F(
2
3
2
3
3
3
3
)

BE
=(-1,0,
3
2
),
BF
=(-
4
3
2
3
3
3
3
)

n
=(x,y,z),
n
平面BEF,
-x+
3
2
z=0
-
4
3
x+
2
3
3
y+
3
3
z=0

n1
平面BCD,则
n1
可取(0,0,1),
cos<
n
n1
>=
2
2

所以,平面BEF与平面BCD所成的锐二面角为45°.
方法二(几何法):
延长EF,交CD的延长线于G,连接BG,精英家教网
过E作EH⊥BC于H,则EH⊥平面BCD,
过H作HK⊥BG于K,连接EK,则EK⊥BG,
∴∠EKH即为所求二面角的平面角.
AE
EC
=1

AE=
1
2
AB=
3
2

在Rt△BCD中,可以解得HK=
3
2

∴在Rt△BCD中,∠EKH=45°,即平面BEF与平面BCD所成的锐二面角为45°.
点评:本题考查的知识点是二面角的平面角及求法,平面与平面垂直的判定,其中(1)的关键是将条件
AE
EC
=
AF
FD
,根据平行线分线段成比例定理,转化为EF∥CD,(2)中方法一的关键是将二面角问题转化为向量夹角问题,方法二的关键是确定∠EKH即为所求二面角的平面角.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网