题目内容
(2013•广东)设l为直线,α,β是两个不同的平面,下列命题中正确的是( )
分析:根据线面平行的几何特征及面面平行的判定方法,可判断A;
根据面面平行的判定方法及线面垂直的几何特征,可判断B;
根据线面平行的性质定理,线面垂直及面面垂直的判定定理,可判断C;
根据面面垂直及线面平行的几何特征,可判断D.
根据面面平行的判定方法及线面垂直的几何特征,可判断B;
根据线面平行的性质定理,线面垂直及面面垂直的判定定理,可判断C;
根据面面垂直及线面平行的几何特征,可判断D.
解答:解:若l∥α,l∥β,则平面α,β可能相交,此时交线与l平行,故A错误;
若l⊥α,l⊥β,根据垂直于同一直线的两个平面平行,可得B正确;
若l⊥α,l∥β,则存在直线m?β,使l∥m,则m⊥α,故此时α⊥β,故C错误;
若α⊥β,l∥α,则l与β可能相交,可能平行,也可能线在面内,故D错误;
故选B
若l⊥α,l⊥β,根据垂直于同一直线的两个平面平行,可得B正确;
若l⊥α,l∥β,则存在直线m?β,使l∥m,则m⊥α,故此时α⊥β,故C错误;
若α⊥β,l∥α,则l与β可能相交,可能平行,也可能线在面内,故D错误;
故选B
点评:本题考查的知识点是空间中直线与直线的位置关系,直线与平面的位置关系及平面与平面之间的位置关系,熟练掌握空间线面关系的几何特征及判定方法是解答的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目