题目内容
【题目】若f(x)=(m-1)x2+6mx+2是偶函数,则f(0)、f(1)、f(-2)从小到大的顺序是_________.
【答案】f(-2)<f(1)<f(0)
【解析】试题分析:f(x)=(m-1)x2+6mx+2若为偶函数,则表达式中显然不能含有一次项6mx,故m=0.再根据二次函数进行讨论它的单调性即可比较f(0),f(1),f(-2)大小解:(1)若m=1,则函数f(x)=6x+2,
则f(-x)=-6x+2≠f(x),此时函数不是偶函数,所以m≠1,(2)若m≠1,且函数f(x)=(m-1)x2+6mx+2是偶函数,则 一次项6mx=0恒成立,则 m=0,因此,函数为 f(x)=-x2+2,此函数图象是开口向下,以y轴为对称轴二次函数图象由其单调性得:f(-2)<f(1)<f(0)故答案为f(-2)<f(1)<f(0)
练习册系列答案
相关题目