题目内容
(1)求[(1+2i)•i100+(
)5]2-(
)20的值;
(2)设z的共轭复数为
,若z+
=4,z•
=8,求
的值.
1-i |
1+i |
1+i | ||
|
(2)设z的共轭复数为
. |
z |
. |
z |
. |
z |
| ||
z |
(1)原式=[(1+2i)+(-i)5]2-i10
=(1+i)2-(-1)=2i+1.
(2)设z=x+yi(x,y∈R),则
=x-yi,
则(x+yi)+(x-yi)=4,即2x=4,解得x=2,(x+yi)(x-yi)=8,即x2+y2=8,
所以4+y2=8,解得y=±2,
所以z=2±2i,
当z=2+i时,
=
=
=
;
当z=2-i时,
=
=
=
;
=(1+i)2-(-1)=2i+1.
(2)设z=x+yi(x,y∈R),则
. |
z |
则(x+yi)+(x-yi)=4,即2x=4,解得x=2,(x+yi)(x-yi)=8,即x2+y2=8,
所以4+y2=8,解得y=±2,
所以z=2±2i,
当z=2+i时,
| ||
z |
2-i |
2+i |
(2-i)2 |
(2+i)(2-i) |
3-4i |
5 |
当z=2-i时,
| ||
z |
2+i |
2-i |
(2+i)2 |
(2-i)(2+i) |
3+2i |
5 |
练习册系列答案
相关题目