题目内容
设F1、F2是椭圆![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_ST/3.png)
(1)求实数λ的取值范围;
(2)设λ=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_ST/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_ST/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_ST/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_ST/7.png)
(3)在(2)的基础上猜想:是否存在实数n,使
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_ST/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_ST/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_ST/10.png)
【答案】分析:(1)设N(x,y),由点N满足:
=
+λ
(λ∈R),将相关点的坐标代入,由向量相等的充要条件,可将N点坐标用λ表示,代入椭圆方程,得λ与a、b、c的等式,利用离心率的范围即可求得λ的范围
(2)由(1)知N(
,
),再由直线NF2与椭圆联立求得D(0,-b),而点Q的横坐标也已知为
,将这些点的坐标代入已知
=m(
+
),即可得m=
=
,Q(
,-
),从而求得切线NQ的斜率,等于利用导数的几何意义求得的椭圆在点N处的切线斜率,求得椭圆离心率,进而求出m的值
(3)根据(2)的思路,只需求出直线NF1与椭圆的交点C的横坐标,代入
=n(
+
),得m与离心率的关系,代入求得的离心率即可猜想n值
解答:解:(1)设N(x,y)
∵F1(-c,0)F2(c,0),A(0,b),
∴
=(c,b),
=((2c,0),
=(x+c,y)
∵
=
+λ
(λ∈R),
∴(x+c,y)=(2c,0)+λ(c,b),
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/22.png)
∴
,
∵N点在椭圆上,代入椭圆方程![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/24.png)
得![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/25.png)
∴
,显然λ=-1满足等式
若λ≠-1,则![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/27.png)
∵椭圆的离心率e=
∈(0,1)
∴0<
<1
解得0<λ<1
∴实数λ的取值范围为(0,1)∪{-1}
(2)∵λ=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/30.png)
∴N(
,
)
∵直线NF2的方程为y=
(x-c)
即y=
(x-c),∵此直线过点(0,-b)
∴D(0,-b)
假设存在实数m,使
=m(
+
)
∵Q在右准线x=
上,∴Q的横坐标为
,设纵坐标为yQ
则(
,yQ)=m[(
,
)+(0,-b)]
∴
=
×m,∴m=
=
*
∴yQ=-
=-![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/48.png)
Q(
,-
)
∵直线NQ的斜率为
=
=
①
由
,得椭圆在第一象限的图象的函数解析式为y=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/55.png)
y′=
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/57.png)
∴y′
=
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/60.png)
即椭圆切线NQ的斜率为
②
由①②得
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/63.png)
化简得![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/64.png)
两边同除以a4,得![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/65.png)
解得e2=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/66.png)
代入*式,得m=
=2
故存在实数m=2,使
=m(
+
)
(3)∵N(
,
)
∵直线NF1的方程为y=
(x+c)
即y=
(x+c),代入椭圆方程得(1+
)x2+
x-
=0
∴xC×
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/79.png)
∴xC=
,
假设存在实数n,使
=n(
+
)
∵P在左准线x=-
上,∴Q的横坐标为-
,设纵坐标为yP
则(-
,yP)=m[(
,
)+(
,yC)]
∴-
=(
+
)×m,
∴m=
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/94.png)
由(2)知e2=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/95.png)
代入上式得:m=14
故猜想存在n=14,使
=n(
+
)
点评:本题考查了椭圆的标准方程及其几何性质,直线与椭圆的位置关系,向量与解析几何的综合运用
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/2.png)
(2)由(1)知N(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/12.png)
(3)根据(2)的思路,只需求出直线NF1与椭圆的交点C的横坐标,代入
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/15.png)
解答:解:(1)设N(x,y)
∵F1(-c,0)F2(c,0),A(0,b),
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/18.png)
∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/21.png)
∴(x+c,y)=(2c,0)+λ(c,b),
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/22.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/23.png)
∵N点在椭圆上,代入椭圆方程
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/24.png)
得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/25.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/26.png)
若λ≠-1,则
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/27.png)
∵椭圆的离心率e=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/28.png)
∴0<
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/29.png)
解得0<λ<1
∴实数λ的取值范围为(0,1)∪{-1}
(2)∵λ=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/30.png)
∴N(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/31.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/32.png)
∵直线NF2的方程为y=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/33.png)
即y=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/34.png)
∴D(0,-b)
假设存在实数m,使
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/35.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/36.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/37.png)
∵Q在右准线x=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/38.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/39.png)
则(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/40.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/41.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/42.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/43.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/44.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/45.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/46.png)
∴yQ=-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/47.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/48.png)
Q(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/49.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/50.png)
∵直线NQ的斜率为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/51.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/52.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/53.png)
由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/54.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/55.png)
y′=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/56.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/57.png)
∴y′
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/58.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/59.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/60.png)
即椭圆切线NQ的斜率为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/61.png)
由①②得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/62.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/63.png)
化简得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/64.png)
两边同除以a4,得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/65.png)
解得e2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/66.png)
代入*式,得m=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/67.png)
故存在实数m=2,使
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/68.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/69.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/70.png)
(3)∵N(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/71.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/72.png)
∵直线NF1的方程为y=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/73.png)
即y=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/74.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/75.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/76.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/77.png)
∴xC×
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/78.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/79.png)
∴xC=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/80.png)
假设存在实数n,使
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/81.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/82.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/83.png)
∵P在左准线x=-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/84.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/85.png)
则(-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/86.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/87.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/88.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/89.png)
∴-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/90.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/91.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/92.png)
∴m=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/93.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/94.png)
由(2)知e2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/95.png)
代入上式得:m=14
故猜想存在n=14,使
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/96.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/97.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024184004064708570/SYS201310241840040647085020_DA/98.png)
点评:本题考查了椭圆的标准方程及其几何性质,直线与椭圆的位置关系,向量与解析几何的综合运用
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目