题目内容
已知圆C的半径为2,圆心在
轴正半轴上,直线
与圆C相切
(1)求圆C的方程;
(2)过点
的直线
与圆C交于不同的两点
且为
时,求:
的面积.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023604769266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023604800636.png)
(1)求圆C的方程;
(2)过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023604816571.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023604831280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023604847828.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023604863631.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023604894516.png)
(1)
;(2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023604909725.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023604925511.png)
试题分析:(1)半径已知,所以只需确定圆心即可,设圆心
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023604941687.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023604800636.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023604972417.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605003283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023604863631.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605019536.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023604769266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605050312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605065565.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023604863631.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605050312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605097417.png)
试题解析:(I)设圆心为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023604941687.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605128735.png)
因为圆C与
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023604800636.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605159836.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605175732.png)
所以圆C的方程为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023604909725.png)
(II)依题意:设直线l的方程为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605019536.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240236052061086.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605221976.png)
∵l与圆C相交于不同两点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605237858.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240236052531067.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605268834.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605284704.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240236052992630.png)
又∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605315655.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240236053311315.png)
整理得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605346622.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605362534.png)
∴直线l的方程为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605377489.png)
圆心C到l的距离
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605393846.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605409696.png)
原点O到直线l的距离,即△AOB底边AB边上的高
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023605440730.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240236054551610.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目