题目内容
设函数f(x)=ax(a>0且a≠1),,则不等式loga|x|<0的解为________
{x|-1<x<0,或0<x<1}
设函数f(x)=ax+cosx,x∈[0,π].
(1)讨论f(x)的单调性;
(2)设f(x)≤1+sinx,求a的取值范围.
设函数f(x)=ax-lnx-3(a∈R),g(x)=.
(Ⅰ)若函数 g(x)的图象在点(0,0)处的切线也恰为f(x)图象的一条切线,求实数a的值;
(Ⅱ)是否存在实数a,对任意的x∈(0,e],都有唯一的x0∈[e-4,e],使得f(x0)=g(x)成立.若存在,求出a的取值范围;若不存在,请说明理由.注:e是自然对数的底数.
设函数f(x)=ax+2,不等式|f(x)|<6的解集为(-1,2),试求不等式≤1的解集.
设函数 f (x)=ax-lnx-3(a∈R),g(x)=xe1-x.
(Ⅰ)若函数 g(x) 的图象在点 (0,0) 处的切线也恰为 f (x) 图象的一条切线,求实数 a的值;
(Ⅱ)是否存在实数a,对任意的 x∈(0,e],都有唯一的 x0∈[e-4,e],使得 f (x0)=g(x) 成立.若存在,求出a的取值范围;若不存在,请说明理由.
注:e是自然对数的底数.
设函数f(x)=ax+ (a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方
程为y=3.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,
并求出此定值.