题目内容
【题目】已知点F为椭圆的右焦点,点A为椭圆的右顶点.
(1)求过点F、A且和直线相切的圆C的方程;
(2)过点F任作一条不与轴重合的直线,直线与椭圆交于P,Q两点,直线PA,QA分别与直线相交于点M,N.试证明:以线段MN为直径的圆恒过点F.
【答案】(1);(2)证明见解析.
【解析】
由已知可得,即可求出其中垂线,即可得出半径为7,即可求出圆心坐标.即可写出圆C的方程.
以线段MN为直径的圆恒过点等价于,讨论直线的斜率是否存在,写出直线,联立解出P、Q,结合写出直线,即可得到点M,N,结合,即可说明.
(1)由已知得:
圆C的圆心一定在线段AF中垂线上
由圆C与直线相切,得:圆C的半径
设圆C的圆心坐标为,则有:
,
即圆心
圆C的方程为:
(2)证明:当直线斜率不存在时,其方程为,
联立,解得,又因为.
所以直线为.
可求得M,N两点坐标分别为或,又
的斜率之积为:
.
当直线斜率存在时,设直线的方程为:
联立方程组:,
消去整理得:
又设
由P,A,M共线得:,
由Q,A,N共线得:,
所以FM,FN的斜率之积为:
综上可知:恒有
以线段MN为直径的圆恒过点F.
【题目】小张上班从家到公司开车有两条线路,所需时间(分钟)随交通堵塞状况有所变化,其概率分布如下表所示:
所需时间(分钟) | 30 | 40 | 50 | 60 |
线路一 | 0.5 | 0.2 | 0.2 | 0.1 |
线路二 | 0.3 | 0.5 | 0.1 | 0.1 |
则下列说法正确的是( )
A.任选一条线路,“所需时间小于50分钟”与“所需时间为60分钟”是对立事件
B.从所需的平均时间看,线路一比线路二更节省时间
C.如果要求在45分钟以内从家赶到公司,小张应该走线路一
D.若小张上、下班走不同线路,则所需时间之和大于100分钟的概率为0.04
【题目】某社会机构为了调查对手机游戏的兴趣与年龄的关系,通过问卷调查,整理数据得如下列联表:
40岁以下 | 40岁以上 | 合计 | |
很兴趣 | 30 | 15 | 45 |
无兴趣 | 20 | 35 | 55 |
合计 | 50 | 50 | 100 |
(1)根据列联表,能否有的把握认为对手机游戏的兴趣程度与年龄有关?
(2)若已经从岁以下的被调查者中用分层抽样的方式抽取了名,现从这名被调查者中随机选取名,求这名被调查者中恰有名对手机游戏无兴趣的概率.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.84 | 6.635 | 10.828 |
(注:参考公式:,其中)