ÌâÄ¿ÄÚÈÝ
¶¨Ò壺ÊýÁÐ{an}¶ÔÒ»ÇÐÕýÕûÊýn¾ùÂú×ã
£¾an+1£¬³ÆÊýÁÐ{an}Ϊ¡°Í¹ÊýÁС±£¬Ò»Ï¹ØÓÚ¡°Í¹ÊýÁС±µÄ˵·¨£º
£¨1£©µÈ²îÊýÁÐ{an}Ò»¶¨ÊÇ͹ÊýÁÐ
£¨2£©Ê×Ïîa1£¾0£¬¹«±Èq£¾0ÇÒq¡Ù1µÄµÈ±ÈÊýÁÐ{an}Ò»¶¨ÊÇ͹ÊýÁÐ
£¨3£©ÈôÊýÁÐ{an}Ϊ͹ÊýÁУ¬ÔòÊýÁÐ{an+1-an}Êǵ¥µ÷µÝÔöÊýÁÐ
£¨4£©Í¹ÊýÁÐ{an}Ϊµ¥µ÷µÝÔöÊýÁеijäÒªÌõ¼þÊÇ´æÔÚn0¡ÊN*£¬Ê¹µÃan0+1£¾an0
ÆäÖÐÕýȷ˵·¨µÄ¸öÊýÊÇ £®
an+an+2 | 2 |
£¨1£©µÈ²îÊýÁÐ{an}Ò»¶¨ÊÇ͹ÊýÁÐ
£¨2£©Ê×Ïîa1£¾0£¬¹«±Èq£¾0ÇÒq¡Ù1µÄµÈ±ÈÊýÁÐ{an}Ò»¶¨ÊÇ͹ÊýÁÐ
£¨3£©ÈôÊýÁÐ{an}Ϊ͹ÊýÁУ¬ÔòÊýÁÐ{an+1-an}Êǵ¥µ÷µÝÔöÊýÁÐ
£¨4£©Í¹ÊýÁÐ{an}Ϊµ¥µ÷µÝÔöÊýÁеijäÒªÌõ¼þÊÇ´æÔÚn0¡ÊN*£¬Ê¹µÃan0+1£¾an0
ÆäÖÐÕýȷ˵·¨µÄ¸öÊýÊÇ
·ÖÎö£º£¨1£©ÓɵȲîÊýÁÐ{an}µÄÐÔÖʿɵãº
=an+1£¬²»Âú×ã
£¾an+1£¬¼´¿ÉÅжϳö£®
£¨2£©ÓÉÓÚÊ×Ïîa1£¾0£¬¹«±Èq£¾0ÇÒq¡Ù1µÄµÈ±ÈÊýÁÐ{an}£¬¿ÉµÃan£¾0£®
¿ÉµÃ
=
=an•
£¾anq=an+1£®¼´¿ÉÅжϳö£®
£¨3£©ÓÉÓÚÊýÁÐ{an}Ϊ͹ÊýÁУ¬¿ÉÖª£ºÊýÁÐ{an}¶ÔÒ»ÇÐÕýÕûÊýn¾ùÂú×ã
£¾an+1£¬
¿ÉµÃ£ºan+2-an+1£¾an+1-an£¬¼´¿ÉÅжϳöÊýÁÐ{an+1-an}µÄµ¥µ÷ÐÔ£®
£¨4£©¢Ù͹ÊýÁÐ{an}Ϊµ¥µ÷µÝÔöÊýÁпɵöÔÓÚÈÎÒâµÄn0¡ÊN*£¬¶¼ÓÐan0+1£¾an0£»
¢Ú¶ÔÓÚ͹ÊýÁÐ{an}´æÔÚn0¡ÊN*£¬Ê¹µÃan0+1£¾an0£®Ôòan0+2-an0+1£¾2an0+1-an0-an0+1=an0+1-an0£¾0£®¿ÉµÃÊýÁÐ{an}´Ón0ÏʼÊǵ¥µ÷µÝÔöÊýÁУ®Èç¹ûn0£¾1£¬Ôò´ËÊýÁв»Ò»¶¨ÊǵÝÔöÊýÁУ®
an+an+2 |
2 |
an+an+2 |
2 |
£¨2£©ÓÉÓÚÊ×Ïîa1£¾0£¬¹«±Èq£¾0ÇÒq¡Ù1µÄµÈ±ÈÊýÁÐ{an}£¬¿ÉµÃan£¾0£®
¿ÉµÃ
an+an+2 |
2 |
an+anq2 |
2 |
1+q2 |
2 |
£¨3£©ÓÉÓÚÊýÁÐ{an}Ϊ͹ÊýÁУ¬¿ÉÖª£ºÊýÁÐ{an}¶ÔÒ»ÇÐÕýÕûÊýn¾ùÂú×ã
an+an+2 |
2 |
¿ÉµÃ£ºan+2-an+1£¾an+1-an£¬¼´¿ÉÅжϳöÊýÁÐ{an+1-an}µÄµ¥µ÷ÐÔ£®
£¨4£©¢Ù͹ÊýÁÐ{an}Ϊµ¥µ÷µÝÔöÊýÁпɵöÔÓÚÈÎÒâµÄn0¡ÊN*£¬¶¼ÓÐan0+1£¾an0£»
¢Ú¶ÔÓÚ͹ÊýÁÐ{an}´æÔÚn0¡ÊN*£¬Ê¹µÃan0+1£¾an0£®Ôòan0+2-an0+1£¾2an0+1-an0-an0+1=an0+1-an0£¾0£®¿ÉµÃÊýÁÐ{an}´Ón0ÏʼÊǵ¥µ÷µÝÔöÊýÁУ®Èç¹ûn0£¾1£¬Ôò´ËÊýÁв»Ò»¶¨ÊǵÝÔöÊýÁУ®
½â´ð£º½â£º£¨1£©ÓɵȲîÊýÁÐ{an}µÄÐÔÖʿɵãº
=an+1£¬²»Âú×ã
£¾an+1£¬Òò´Ë²»ÊÇ¡°Í¹ÊýÁС±£®
£¨2£©¡ßÊ×Ïîa1£¾0£¬¹«±Èq£¾0ÇÒq¡Ù1µÄµÈ±ÈÊýÁÐ{an}£¬
¡àan=a1qn-1£¾0£®
¡à
=
=an•
£¾anq=an+1£®Òò´ËÊÇ¡°Í¹ÊýÁС±£®¹ÊÕýÈ·£®
£¨3£©¡ßÊýÁÐ{an}Ϊ͹ÊýÁУ¬¡àÊýÁÐ{an}¶ÔÒ»ÇÐÕýÕûÊýn¾ùÂú×ã
£¾an+1£¬
¡àan+2-an+1£¾an+1-an£¬
¡àÊýÁÐ{an+1-an}Êǵ¥µ÷µÝÔöÊýÁУ®Òò´ËÕýÈ·£®
£¨4£©¢Ù͹ÊýÁÐ{an}Ϊµ¥µ÷µÝÔöÊýÁпɵöÔÓÚÈÎÒâµÄn0¡ÊN*£¬¶¼ÓÐan0+1£¾an0£»
¢Ú¶ÔÓÚ͹ÊýÁÐ{an}´æÔÚn0¡ÊN*£¬Ê¹µÃan0+1£¾an0£®
Ôòan0+2-an0+1£¾2an0+1-an0-an0+1=an0+1-an0£¾0£®
Èç¹ûn0£¾1£¬Ôò´ËÊýÁв»Ò»¶¨ÊǵÝÔöÊýÁУ®
Òò´Ë£¨4£©²»ÕýÈ·£®
×ÛÉÏ¿ÉÖª£ºÖ»ÓУ¨2£©£¨3£©ÕýÈ·£®
¹Ê´ð°¸Îª£º2£®
an+an+2 |
2 |
an+an+2 |
2 |
£¨2£©¡ßÊ×Ïîa1£¾0£¬¹«±Èq£¾0ÇÒq¡Ù1µÄµÈ±ÈÊýÁÐ{an}£¬
¡àan=a1qn-1£¾0£®
¡à
an+an+2 |
2 |
an+anq2 |
2 |
1+q2 |
2 |
£¨3£©¡ßÊýÁÐ{an}Ϊ͹ÊýÁУ¬¡àÊýÁÐ{an}¶ÔÒ»ÇÐÕýÕûÊýn¾ùÂú×ã
an+an+2 |
2 |
¡àan+2-an+1£¾an+1-an£¬
¡àÊýÁÐ{an+1-an}Êǵ¥µ÷µÝÔöÊýÁУ®Òò´ËÕýÈ·£®
£¨4£©¢Ù͹ÊýÁÐ{an}Ϊµ¥µ÷µÝÔöÊýÁпɵöÔÓÚÈÎÒâµÄn0¡ÊN*£¬¶¼ÓÐan0+1£¾an0£»
¢Ú¶ÔÓÚ͹ÊýÁÐ{an}´æÔÚn0¡ÊN*£¬Ê¹µÃan0+1£¾an0£®
Ôòan0+2-an0+1£¾2an0+1-an0-an0+1=an0+1-an0£¾0£®
Èç¹ûn0£¾1£¬Ôò´ËÊýÁв»Ò»¶¨ÊǵÝÔöÊýÁУ®
Òò´Ë£¨4£©²»ÕýÈ·£®
×ÛÉÏ¿ÉÖª£ºÖ»ÓУ¨2£©£¨3£©ÕýÈ·£®
¹Ê´ð°¸Îª£º2£®
µãÆÀ£º±¾Ì⿼²éÁ˵ȲîÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ¼°ÆäÐÔÖÊ¡¢Ð¶¨Ò塰͹ÊýÁС±µÄÒâÒ壬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿