题目内容

某学生在证明等差数列前n项和公式时,证法如下:

(1)当n=1时,S1=a1显然成立.

(2)假设n=k时,公式成立,即

Sk=ka1+

当n=k+1时,

Sk+1=a1+a2+…+ak+ak+1

=a1+(a1+d)+(a1+2d)+…+a1+(k-1)d+a1+kd

=(k+1)a1+(d+2d+…+kd)

=(k+1)a1+d

=(k+1)a1+d.

∴n=k+1时公式成立.

∴由(1)(2)可知对n∈N+,公式成立.

以上证明错误的是(    )

A.当n取第一个值1时,证明不对

B.归纳假设写法不对

C.从n=k到n=k+1的推理中未用归纳假设

D.从n=k到n=k+1的推理有错误

思路解析:在第(2)步证明中,归纳假设未用到.

答案:C

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网