ÌâÄ¿ÄÚÈÝ
4£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxoyÖУ¬ÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪe=$\frac{\sqrt{3}}{2}$£¬¹ýÍÖÔ²Óɽ¹µãF×÷Á½Ìõ»¥Ïà´¹Ö±µÄÏÒABÓëCD£®µ±Ö±ÏßABбÂÊΪ0ʱ£¬ÏÒAB³¤4£®£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÈôÖ±ÏßABбÂÊΪ1ʱ£¬ÇóÏÒAB³¤£»
£¨3£©¹ýÍÖÔ²µÄ¶Ô³ÆÖÐÐÄO£¬×÷Ö±ÏßL£¬½»ÍÖÔ²ÓëM£¬N£¬Èý½ÇÐÎFMNÊÇ·ñ´æÔÚÔÚ´óÃæ»ý£¿Èô´æÔÚ£¬Çó³öËüµÄ×î´óÃæ»ýÖµ£®Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©$e=\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬2a=4£¬ÓÖa2=b2+c2£¬½âµÃ£ºa=2£¬c=$\sqrt{3}$£¬b=1£¬¼´¿ÉÇó³öÍÖÔ²µÄ·½³Ì£»
£¨2£©Ð´³öÖ±ÏßABµÄ·½³Ì£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬Çó³öA£¬BµÄºá×ø±ê£¬´úÈëÏÒ³¤¹«Ê½ÇóÏÒAB³¤£»
£¨3£©·ÖLµÄбÂÊ´æÔںͲ»´æÔÚÇó½â£¬µ±Ö±ÏßLµÄбÂʲ»´æÔÚʱ£¬M£¬NΪÍÖÔ²¶ÌÖáµÄÁ½¸ö¶Ëµã£¬Ö±½ÓÇóÃæ»ý£¬µ±Ö±ÏßLµÄбÂÊ´æÔÚʱ£¬Éè³öÖ±Ïß·½³Ì£¬ºÍÍÖÔ²·½³ÌÁªÁ¢£¬»¯Îª¹ØÓÚyµÄÒ»Ôª¶þ´Î·½³Ì£¬Çó³öM£¬NµÄ×Ý×ø±ê£¬´úÈëÏÒ³¤¹«Ê½¿ÉµÃÃæ»ýµÄ·¶Î§£¬Ôò´ð°¸¿ÉÇó£®
½â´ð ½â£º£¨1£©¡ß$e=\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬2a=4£¬
¡àa=2£¬c=$\sqrt{3}$£¬
ÓÖa2=b2+c2£¬½âµÃ£ºb2=1£¬
¡àÍÖÔ²·½³ÌΪ£º$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨2£©ÓÉÌâÒâ¿ÉÖªÖ±ÏßABµÄ·½³ÌΪy=x-$\sqrt{3}$£¬
ÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³ÌµÃ£º5x2-8$\sqrt{3}$x+8=0£¬
½âµÃ${x}_{1}=\frac{4\sqrt{3}-2\sqrt{2}}{5}£¬{x}_{2}=\frac{4\sqrt{3}+2\sqrt{2}}{5}$£¬
¡à|AB|=$\sqrt{1+{k}^{2}}|{x}_{1}-{x}_{2}|$=$\sqrt{2}¡Á\frac{4\sqrt{2}}{5}=\frac{8}{5}$£»
£¨3£©µ±Ö±ÏßLµÄбÂʲ»´æÔÚʱ£¬M£¬NΪÍÖÔ²¶ÌÖáµÄÁ½¸ö¶Ëµã£¬
Ôò|MN|=2b=2£¬F£¨$\sqrt{3}$£¬0£©£¬
¡à${S}_{¡÷FMN}=\frac{1}{2}¡Á2¡Á\sqrt{3}$=$\sqrt{3}$£»
µ±Ö±ÏßLµÄбÂÊ´æÔÚʱ£¬ÉèÖ±Ïß·½³ÌΪy=kx£¨k¡Ù0£©£¬
ÁªÁ¢Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌµÃ£¨1+4k2£©y2-4k2=0£¬½âµÃy=$¡À\frac{2|k|}{\sqrt{1+4{k}^{2}}}$£¬
¡à${S}_{¡÷FMN}=\frac{1}{2}¡Á2\sqrt{3}¡Á|\frac{2k}{\sqrt{1+4{k}^{2}}}|$$£¼\sqrt{3}$£®
×ÛÉÏ£¬µ±Ö±ÏßLÓëyÖáÖغÏʱ£¬ËùµÃÈý½ÇÐÎFMNµÄÃæ»ý×î´ó£¬×î´óÃæ»ýΪ$\sqrt{3}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÍÖÔ²·½³ÌµÄÇ󷨣¬ÑµÁ·ÁËÇó½âÖ±ÏߺÍԲ׶ÇúÏßÏཻµÄÎÊÌ⣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊÇÖеµÌ⣮
A£® | x2+y2=$\frac{1}{5}$ | B£® | £¨x-1£©2+y2=$\frac{2}{5}$ | C£® | x2+y2=$\frac{4}{5}$ | D£® | x2+y2=$\frac{3}{5}$ |