ÌâÄ¿ÄÚÈÝ
Èô¶¨ÒåÔÚDÉϵĺ¯Êýy=f£¨x£©Âú×ãÌõ¼þ£º´æÔÚʵÊýa£¬b£¨a£¼b£©ÇÒ[a£¬b]?D£¬Ê¹µÃ£º
¢ÙÈÎÈ¡x0¡Ê[a£¬b]£¬ÓÐf£¨x0£©=C£¨CÊdz£Êý£©£»
¢Ú¶ÔÓÚDÄÚÈÎÒây0£¬µ±y0∉[a£¬b]£¬×ÜÓÐf£¨y0£©£¼C£®
ÎÒÃǽ«Âú×ãÉÏÊöÁ½Ìõ¼þµÄº¯Êýf£¨x£©³ÆΪ¡°Æ½¶¥ÐÍ¡±º¯Êý£¬³ÆCΪ¡°Æ½¶¥¸ß¶È¡±£¬³Æb-aΪ¡°Æ½¶¥¿í¶È¡±£®¸ù¾ÝÉÏÊö¶¨Ò壬½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©º¯Êýf£¨x£©=-|x+2|-|x-3|ÊÇ·ñΪ¡°Æ½¶¥ÐÍ¡±º¯Êý£¿ÈôÊÇ£¬Çó³ö¡°Æ½¶¥¸ß¶È¡±ºÍ¡°Æ½¶¥¿í¶È¡±£»Èô²»ÊÇ£¬¼òҪ˵Ã÷ÀíÓÉ£®
£¨2£©ÒÑÖªf(x)=mx-
£¬x¡Ê[-2£¬+¡Þ)ÊÇ¡°Æ½¶¥ÐÍ¡±º¯Êý£¬Çó³öm£¬nµÄÖµ£®
£¨3£©¶ÔÓÚ£¨2£©Öеĺ¯Êýf£¨x£©£¬Èôf£¨x£©=kxÔÚx¡Ê[-2£¬+¡Þ£©ÉÏÓÐÁ½¸ö²»ÏàµÈµÄ¸ù£¬ÇóʵÊýkµÄÈ¡Öµ·¶Î§£®
¢ÙÈÎÈ¡x0¡Ê[a£¬b]£¬ÓÐf£¨x0£©=C£¨CÊdz£Êý£©£»
¢Ú¶ÔÓÚDÄÚÈÎÒây0£¬µ±y0∉[a£¬b]£¬×ÜÓÐf£¨y0£©£¼C£®
ÎÒÃǽ«Âú×ãÉÏÊöÁ½Ìõ¼þµÄº¯Êýf£¨x£©³ÆΪ¡°Æ½¶¥ÐÍ¡±º¯Êý£¬³ÆCΪ¡°Æ½¶¥¸ß¶È¡±£¬³Æb-aΪ¡°Æ½¶¥¿í¶È¡±£®¸ù¾ÝÉÏÊö¶¨Ò壬½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©º¯Êýf£¨x£©=-|x+2|-|x-3|ÊÇ·ñΪ¡°Æ½¶¥ÐÍ¡±º¯Êý£¿ÈôÊÇ£¬Çó³ö¡°Æ½¶¥¸ß¶È¡±ºÍ¡°Æ½¶¥¿í¶È¡±£»Èô²»ÊÇ£¬¼òҪ˵Ã÷ÀíÓÉ£®
£¨2£©ÒÑÖªf(x)=mx-
x2+2x+n |
£¨3£©¶ÔÓÚ£¨2£©Öеĺ¯Êýf£¨x£©£¬Èôf£¨x£©=kxÔÚx¡Ê[-2£¬+¡Þ£©ÉÏÓÐÁ½¸ö²»ÏàµÈµÄ¸ù£¬ÇóʵÊýkµÄÈ¡Öµ·¶Î§£®
£¨1£©f(x)=
£¬------2¡ä
Ôò´æÔÚÇø¼ä[-2£¬3]ʹx¡Ê[-2£¬3]ʱf£¨x£©=-5
ÇÒµ±x£¼-2ºÍx£¾3ʱ£¬f£¨x£©£¼-5ºã³ÉÁ¢£® 2¡ä
ËùÒÔº¯Êýf£¨x£©ÊÇ¡°Æ½¶¥ÐÍ¡±º¯Êý£¬Æ½¶¥¸ß¶ÈΪ-5£¬Æ½¶¥¿í¶ÈΪ5£®---2¡ä
£¨2£©´æÔÚÇø¼ä[a£¬b]?[-2£¬+¡Þ£©£¬Ê¹µÃmx-
=cºã³ÉÁ¢----1¡ä
Ôòx2+2x+n=£¨mx-c£©2ºã³ÉÁ¢£¬Ôò
?
»ò
----3¡ä
µ±m=n=1ʱ£¬f(x)=
²»ÊÇ¡°Æ½¶¥ÐÍ¡±º¯Êý£®
µ±m=-1£¬n=1ʱ£¬f(x)=
ÊÇ¡°Æ½¶¥ÐÍ¡±º¯Êý¡àm=-1£¬n=1
£¨3£©x¡Ý-1ʱ£¬-2x-1=kx£¬Ôò
¡Ý-1£¬µÃk£¼-2»òk¡Ý-1------2¡ä
-2¡Üx£¼-1ʱ£¬1=kx£¬Ôò-2¡Ü
£¼-1£¬µÃ-1£¼k¡Ü-
--2¡äËùÒÔ-1£¼k¡Ü-
£®1¡ä
|
Ôò´æÔÚÇø¼ä[-2£¬3]ʹx¡Ê[-2£¬3]ʱf£¨x£©=-5
ÇÒµ±x£¼-2ºÍx£¾3ʱ£¬f£¨x£©£¼-5ºã³ÉÁ¢£® 2¡ä
ËùÒÔº¯Êýf£¨x£©ÊÇ¡°Æ½¶¥ÐÍ¡±º¯Êý£¬Æ½¶¥¸ß¶ÈΪ-5£¬Æ½¶¥¿í¶ÈΪ5£®---2¡ä
£¨2£©´æÔÚÇø¼ä[a£¬b]?[-2£¬+¡Þ£©£¬Ê¹µÃmx-
x2+2x+n |
Ôòx2+2x+n=£¨mx-c£©2ºã³ÉÁ¢£¬Ôò
|
|
|
µ±m=n=1ʱ£¬f(x)=
|
µ±m=-1£¬n=1ʱ£¬f(x)=
|
£¨3£©x¡Ý-1ʱ£¬-2x-1=kx£¬Ôò
-1 |
k+2 |
-2¡Üx£¼-1ʱ£¬1=kx£¬Ôò-2¡Ü
1 |
k |
1 |
2 |
1 |
2 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿