题目内容
(1)已知sinθ+cosθ=
,求sin2θ的值.
(2)化简cos40°(1+
tan10°).
| ||
3 |
(2)化简cos40°(1+
3 |
分析:(1)由sinθ+cosθ=
,知(sinθ+cosθ)2=1+sin2θ=
,由此能求出sin2θ.
(2)化切为弦,把cos40°(1+
tan10°)等价转化为cos40°(1+
•
),再由三角函数的和(差)公式把原式等价转化为
•2sin40°,由此能求出结果.
| ||
3 |
4 |
3 |
(2)化切为弦,把cos40°(1+
3 |
3 |
sin10° |
cos10° |
cos40° |
cos10° |
解答:解:(1)∵sinθ+cosθ=
,
∴(sinθ+cosθ)2=sin2θ+cos2θ+2sinθ•cosθ
=1+sin2θ
=
,
∴sin2θ=
.
(2)cos40°(1+
tan10°)
=cos40°(1+
•
)
=
(cos10°+
sin10°)
=
•2sin40°
=
=1.
| ||
3 |
∴(sinθ+cosθ)2=sin2θ+cos2θ+2sinθ•cosθ
=1+sin2θ
=
4 |
3 |
∴sin2θ=
1 |
3 |
(2)cos40°(1+
3 |
=cos40°(1+
3 |
sin10° |
cos10° |
=
cos40° |
cos10° |
3 |
=
cos40° |
cos10° |
=
sin80° |
cos10° |
=1.
点评:本题考查三角函数的化简求值,解题时要认真审题,仔细求解,注意三角函数恒等变换的合理运用.
练习册系列答案
相关题目