题目内容
【题目】如图,在长方体中,,为的中点,为的中点,为线段上一点,且满足,为的中点.
(1)求证:平面;
(2)求二面角的余弦值.
【答案】(1)证明见解析(2)
【解析】
(1)解法一: 作的中点,连接,.利用三角形的中位线证得,利用梯形中位线证得,由此证得平面平面,进而证得平面.解法二:建立空间直角坐标系,通过证明直线的方向向量和平面的法向量垂直,证得平面.
(2)利用平面和平面法向量,计算出二面角的余弦值.
(1)法一:作的中点,连接,.又为的中点,∴为的中位线,∴,又为的中点,∴为梯形的中位线,∴,在平面中,,在平面中,,∴平面平面,又平面,∴平面.
另解:(法二)∵在长方体中,,,两两互相垂直,建立空间直角坐标系如图所示,
则,,,
,,,
,,,
,,.
(1)设平面的一个法向量为,
则,
令,则,.∴,又,
∵,,又平面,平面.
(2)设平面的一个法向量为,
则,
令,则,.∴.
同理可算得平面的一个法向量为
∴,
又由图可知二面角的平面角为一个钝角,
故二面角的余弦值为.
练习册系列答案
相关题目